том 27 издание 4 страницы 303-316

Conformal prediction to define applicability domain – A case study on predicting ER and AR binding

Тип публикацииJournal Article
Дата публикации2016-04-02
scimago Q3
wos Q2
БС1
SJR0.342
CiteScore4.2
Impact factor2.4
ISSN1062936X, 1029046X, 1026776X
Drug Discovery
General Medicine
Molecular Medicine
Bioengineering
Краткое описание
A fundamental element when deriving a robust and predictive in silico model is not only the statistical quality of the model in question but, equally important, the estimate of its predictive boundaries. This work presents a new method, conformal prediction, for applicability domain estimation in the field of endocrine disruptors. The method is applied to binders and non-binders related to the oestrogen and androgen receptors. Ensembles of decision trees are used as statistical method and three different sets (dragon, rdkit and signature fingerprints) are investigated as chemical descriptors. The conformal prediction method results in valid models where there is an excellent balance in quality between the internally validated training set and the corresponding external test set, both in terms of validity and with respect to sensitivity and specificity. With this method the level of confidence can be readily altered by the user and the consequences thereof immediately inspected. Furthermore, the predictive boundaries for the derived models are rigorously defined by using the conformal prediction framework, thus no ambiguity exists as to the level of similarity needed for new compounds to be in or out of the predictive boundaries of the derived models where reliable predictions can be expected.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
Journal of Cheminformatics
3 публикации, 11.11%
Chemical Research in Toxicology
2 публикации, 7.41%
SAR and QSAR in Environmental Research
2 публикации, 7.41%
Xenobiotica
2 публикации, 7.41%
Biomolecules
1 публикация, 3.7%
International Journal of Molecular Sciences
1 публикация, 3.7%
Pharmaceuticals
1 публикация, 3.7%
Frontiers in Pharmacology
1 публикация, 3.7%
Communications Biology
1 публикация, 3.7%
Artificial Intelligence in the Life Sciences
1 публикация, 3.7%
Environmental International
1 публикация, 3.7%
Journal of Pharmaceutical Sciences
1 публикация, 3.7%
Forest Ecology and Management
1 публикация, 3.7%
Journal of Molecular Graphics and Modelling
1 публикация, 3.7%
Wiley Interdisciplinary Reviews: Computational Molecular Science
1 публикация, 3.7%
Journal of Chemical Information and Modeling
1 публикация, 3.7%
Molecular Pharmaceutics
1 публикация, 3.7%
Challenges and Advances in Computational Chemistry and Physics
1 публикация, 3.7%
Machine Learning and Deep Learning in Computational Toxicology
1 публикация, 3.7%
ATLA Alternatives to Laboratory Animals
1 публикация, 3.7%
Global Change Biology
1 публикация, 3.7%
1
2
3

Издатели

1
2
3
4
5
6
Springer Nature
6 публикаций, 22.22%
Elsevier
5 публикаций, 18.52%
American Chemical Society (ACS)
4 публикации, 14.81%
Taylor & Francis
4 публикации, 14.81%
MDPI
3 публикации, 11.11%
Wiley
2 публикации, 7.41%
Frontiers Media S.A.
1 публикация, 3.7%
SAGE
1 публикация, 3.7%
1
2
3
4
5
6
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
Norinder U. et al. Conformal prediction to define applicability domain – A case study on predicting ER and AR binding // SAR and QSAR in Environmental Research. 2016. Vol. 27. No. 4. pp. 303-316.
ГОСТ со всеми авторами (до 50) Скопировать
Norinder U., Rybacka A., Andersson P. Conformal prediction to define applicability domain – A case study on predicting ER and AR binding // SAR and QSAR in Environmental Research. 2016. Vol. 27. No. 4. pp. 303-316.
RIS |
Цитировать
TY - JOUR
DO - 10.1080/1062936x.2016.1172665
UR - https://doi.org/10.1080/1062936x.2016.1172665
TI - Conformal prediction to define applicability domain – A case study on predicting ER and AR binding
T2 - SAR and QSAR in Environmental Research
AU - Norinder, U
AU - Rybacka, A
AU - Andersson, Patrik
PY - 2016
DA - 2016/04/02
PB - Taylor & Francis
SP - 303-316
IS - 4
VL - 27
PMID - 27088868
SN - 1062-936X
SN - 1029-046X
SN - 1026-776X
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2016_Norinder,
author = {U Norinder and A Rybacka and Patrik Andersson},
title = {Conformal prediction to define applicability domain – A case study on predicting ER and AR binding},
journal = {SAR and QSAR in Environmental Research},
year = {2016},
volume = {27},
publisher = {Taylor & Francis},
month = {apr},
url = {https://doi.org/10.1080/1062936x.2016.1172665},
number = {4},
pages = {303--316},
doi = {10.1080/1062936x.2016.1172665}
}
MLA
Цитировать
Norinder, U., et al. “Conformal prediction to define applicability domain – A case study on predicting ER and AR binding.” SAR and QSAR in Environmental Research, vol. 27, no. 4, Apr. 2016, pp. 303-316. https://doi.org/10.1080/1062936x.2016.1172665.