том 26 издание 12 страницы 125009

Artificial neural network based on SQUIDs: demonstration of network training and operation

Fabio Chiarello 1
P. CARELLI 2
M. G. CASTELLANO 1
Guido Torrioli 1
1
 
IFN-CNR, via Cineto Romano 42, I-00156 Rome, Italy
2
 
DSFC, Università dell’Aquila, via Vetoio 1, I-67100 L’Aquila, Italy
Тип публикацииJournal Article
Дата публикации2013-10-18
scimago Q1
wos Q2
БС1
SJR1.095
CiteScore6.7
Impact factor4.2
ISSN09532048, 13616668
Materials Chemistry
Metals and Alloys
Ceramics and Composites
Condensed Matter Physics
Electrical and Electronic Engineering
Краткое описание
We propose a scheme for the realization of artificial neural networks based on superconducting quantum interference devices (SQUIDs). In order to demonstrate the operation of this scheme we designed and successfully tested a small network that implements an XOR gate and is trained by means of examples. The proposed scheme can be particularly convenient as support for superconducting applications such as detectors for astrophysics, high energy experiments, medicine imaging and so on.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
Beilstein Journal of Nanotechnology
5 публикаций, 17.86%
Journal of Applied Physics
4 публикации, 14.29%
IEEE Transactions on Applied Superconductivity
4 публикации, 14.29%
Applied Physics Letters
3 публикации, 10.71%
Symmetry
2 публикации, 7.14%
Superconductor Science and Technology
2 публикации, 7.14%
Low Temperature Physics
1 публикация, 3.57%
Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika)
1 публикация, 3.57%
Physical Review Applied
1 публикация, 3.57%
Physical Review Research
1 публикация, 3.57%
Neuromorphic Computing and Engineering
1 публикация, 3.57%
Communications in Computer and Information Science
1 публикация, 3.57%
1
2
3
4
5

Издатели

1
2
3
4
5
6
7
8
AIP Publishing
8 публикаций, 28.57%
Beilstein-Institut
5 публикаций, 17.86%
Institute of Electrical and Electronics Engineers (IEEE)
5 публикаций, 17.86%
IOP Publishing
3 публикации, 10.71%
MDPI
2 публикации, 7.14%
American Physical Society (APS)
2 публикации, 7.14%
Pleiades Publishing
1 публикация, 3.57%
Springer Nature
1 публикация, 3.57%
1
2
3
4
5
6
7
8
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
28
Поделиться
Цитировать
ГОСТ |
Цитировать
Chiarello F. et al. Artificial neural network based on SQUIDs: demonstration of network training and operation // Superconductor Science and Technology. 2013. Vol. 26. No. 12. p. 125009.
ГОСТ со всеми авторами (до 50) Скопировать
Chiarello F., CARELLI P., CASTELLANO M. G., Torrioli G. Artificial neural network based on SQUIDs: demonstration of network training and operation // Superconductor Science and Technology. 2013. Vol. 26. No. 12. p. 125009.
RIS |
Цитировать
TY - JOUR
DO - 10.1088/0953-2048/26/12/125009
UR - https://doi.org/10.1088/0953-2048/26/12/125009
TI - Artificial neural network based on SQUIDs: demonstration of network training and operation
T2 - Superconductor Science and Technology
AU - Chiarello, Fabio
AU - CARELLI, P.
AU - CASTELLANO, M. G.
AU - Torrioli, Guido
PY - 2013
DA - 2013/10/18
PB - IOP Publishing
SP - 125009
IS - 12
VL - 26
SN - 0953-2048
SN - 1361-6668
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2013_Chiarello,
author = {Fabio Chiarello and P. CARELLI and M. G. CASTELLANO and Guido Torrioli},
title = {Artificial neural network based on SQUIDs: demonstration of network training and operation},
journal = {Superconductor Science and Technology},
year = {2013},
volume = {26},
publisher = {IOP Publishing},
month = {oct},
url = {https://doi.org/10.1088/0953-2048/26/12/125009},
number = {12},
pages = {125009},
doi = {10.1088/0953-2048/26/12/125009}
}
MLA
Цитировать
Chiarello, Fabio, et al. “Artificial neural network based on SQUIDs: demonstration of network training and operation.” Superconductor Science and Technology, vol. 26, no. 12, Oct. 2013, p. 125009. https://doi.org/10.1088/0953-2048/26/12/125009.