том 24 издание 38 страницы 384003

Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation

Тип публикацииJournal Article
Дата публикации2013-09-02
scimago Q2
wos Q2
БС1
SJR0.597
CiteScore6.2
Impact factor2.8
ISSN09574484, 13616528
General Chemistry
General Materials Science
Electrical and Electronic Engineering
Mechanical Engineering
Bioengineering
Mechanics of Materials
Краткое описание
A compact neuromorphic nanodevice with inherent learning and memory properties emulating those of biological synapses is the key to developing artificial neural networks rivaling their biological counterparts. Experimental results showed that memorization with a wide time scale from volatile to permanent can be achieved in a WO3−x-based nanoionics device and can be precisely and cumulatively controlled by adjusting the device’s resistance state and input pulse parameters such as the amplitude, interval, and number. This control is analogous to biological synaptic plasticity including short-term plasticity, long-term potentiation, transition from short-term memory to long-term memory, forgetting processes for short- and long-term memory, learning speed, and learning history. A compact WO3−x-based nanoionics device with a simple stacked layer structure should thus be a promising candidate for use as an inorganic synapse in artificial neural networks due to its striking resemblance to the biological synapse.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
9
Journal of Applied Physics
9 публикаций, 6.92%
Advanced Materials
6 публикаций, 4.62%
Acta Physica Sinica
5 публикаций, 3.85%
Nanoscale
4 публикации, 3.08%
Scientific Reports
4 публикации, 3.08%
Journal Physics D: Applied Physics
4 публикации, 3.08%
Advanced Electronic Materials
4 публикации, 3.08%
Advanced Materials Technologies
4 публикации, 3.08%
ACS applied materials & interfaces
4 публикации, 3.08%
Physical Chemistry Chemical Physics
4 публикации, 3.08%
Journal of Materials Chemistry C
4 публикации, 3.08%
Advanced Functional Materials
3 публикации, 2.31%
Applied Physics Letters
3 публикации, 2.31%
IEEE Electron Device Letters
3 публикации, 2.31%
Coatings
2 публикации, 1.54%
Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes
2 публикации, 1.54%
Journal of Electroceramics
2 публикации, 1.54%
Nature Communications
2 публикации, 1.54%
Small
2 публикации, 1.54%
Advanced Materials Interfaces
2 публикации, 1.54%
ACS Nano
2 публикации, 1.54%
ACS Applied Electronic Materials
2 публикации, 1.54%
Electronic Materials: Science & Technology
2 публикации, 1.54%
Advances in Atom and Single Molecule Machines
2 публикации, 1.54%
Nano Energy
2 публикации, 1.54%
AIP Advances
1 публикация, 0.77%
Applied Physics Reviews
1 публикация, 0.77%
Physical Review Applied
1 публикация, 0.77%
IUCrJ
1 публикация, 0.77%
1
2
3
4
5
6
7
8
9

Издатели

5
10
15
20
25
Wiley
24 публикации, 18.46%
Springer Nature
19 публикаций, 14.62%
AIP Publishing
15 публикаций, 11.54%
Royal Society of Chemistry (RSC)
15 публикаций, 11.54%
American Chemical Society (ACS)
11 публикаций, 8.46%
Elsevier
9 публикаций, 6.92%
MDPI
7 публикаций, 5.38%
IOP Publishing
6 публикаций, 4.62%
Institute of Electrical and Electronics Engineers (IEEE)
6 публикаций, 4.62%
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
5 публикаций, 3.85%
Japan Society of Applied Physics
3 публикации, 2.31%
Taylor & Francis
2 публикации, 1.54%
American Physical Society (APS)
1 публикация, 0.77%
International Union of Crystallography (IUCr)
1 публикация, 0.77%
Shanghai Institute of Organic Chemistry
1 публикация, 0.77%
Physical Society of Japan
1 публикация, 0.77%
Frontiers Media S.A.
1 публикация, 0.77%
Science in China Press
1 публикация, 0.77%
IntechOpen
1 публикация, 0.77%
5
10
15
20
25
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
130
Поделиться
Цитировать
ГОСТ |
Цитировать
Yang R. et al. Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation // Nanotechnology. 2013. Vol. 24. No. 38. p. 384003.
ГОСТ со всеми авторами (до 50) Скопировать
Yang R., Terabe K., Yao Y., Tsuruoka T., HASEGAWA T., Gimzewski J. K., Aono M. Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation // Nanotechnology. 2013. Vol. 24. No. 38. p. 384003.
RIS |
Цитировать
TY - JOUR
DO - 10.1088/0957-4484/24/38/384003
UR - https://doi.org/10.1088/0957-4484/24/38/384003
TI - Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation
T2 - Nanotechnology
AU - Yang, Rui
AU - Terabe, Kazuya
AU - Yao, Yiping
AU - Tsuruoka, Tohru
AU - HASEGAWA, Tsuyoshi
AU - Gimzewski, James K
AU - Aono, Masakazu
PY - 2013
DA - 2013/09/02
PB - IOP Publishing
SP - 384003
IS - 38
VL - 24
PMID - 23999098
SN - 0957-4484
SN - 1361-6528
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2013_Yang,
author = {Rui Yang and Kazuya Terabe and Yiping Yao and Tohru Tsuruoka and Tsuyoshi HASEGAWA and James K Gimzewski and Masakazu Aono},
title = {Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation},
journal = {Nanotechnology},
year = {2013},
volume = {24},
publisher = {IOP Publishing},
month = {sep},
url = {https://doi.org/10.1088/0957-4484/24/38/384003},
number = {38},
pages = {384003},
doi = {10.1088/0957-4484/24/38/384003}
}
MLA
Цитировать
Yang, Rui, et al. “Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation.” Nanotechnology, vol. 24, no. 38, Sep. 2013, p. 384003. https://doi.org/10.1088/0957-4484/24/38/384003.