Open Access
Open access
Journal of Physics: Conference Series, volume 2438, issue 1, pages 12119

Robust Neural Particle Identification Models

Publication typeJournal Article
Publication date2023-02-01
SJR0.180
CiteScore1.2
Impact factor
ISSN17426588, 17426596
Computer Science Applications
History
Education
Abstract

The volume of data processed by the Large Hadron Collider experiments demands sophisticated selection rules typically based on machine learning algorithms. One of the shortcomings of these approaches is their profound sensitivity to the biases in training samples. In the case of particle identification (PID), this might lead to degradation of the efficiency for some decays not present in the training dataset due to differences in input kinematic distributions. In this talk, we propose a method based on the Common Specific Decomposition that takes into account individual decays and possible misshapes in the training data by disentangling common and decay specific components of the input feature set. We show that the proposed approach reduces the rate of efficiency degradation for the PID algorithms for the decays reconstructed in the LHCb detector.

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?