Quantum Science and Technology, volume 8, issue 3, pages 35024

Speeding up qubit control with bipolar single-flux-quantum pulse sequences

Publication typeJournal Article
Publication date2023-06-09
scimago Q1
SJR2.276
CiteScore11.2
Impact factor5.6
ISSN20589565, 23649054, 23649062
Atomic and Molecular Physics, and Optics
Materials Science (miscellaneous)
Electrical and Electronic Engineering
Physics and Astronomy (miscellaneous)
Abstract

The development of quantum computers based on superconductors requires the improvement of the qubit state control approach aimed at the increase of the hardware energy efficiency. A promising solution to this problem is the use of superconducting digital circuits operating with single-flux-quantum (SFQ) pulses, moving the qubit control system into the cold chamber. However, the qubit gate time under SFQ control is still longer than under conventional microwave driving. Here we introduce the bipolar SFQ pulse control based on ternary pulse sequences. We also develop a robust optimization algorithm for finding a sequence structure that minimizes the leakage of the transmon qubit state from the computational subspace. We show that the appropriate sequence can be found for arbitrary system parameters from the practical range. The proposed bipolar SFQ control reduces a single qubit gate time by halve compared to nowadays unipolar SFQ technique, while maintaining the gate fidelity over 99.99%.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?