volume 32 issue 1 pages 12002

Roadmap on emerging hardware and technology for machine learning

Karl K Berggren 1
Qiangfei Xia 2
Konstantin K. Likharev 3
Dmitri Strukov 4
Hao Jiang 5
Damien Querlioz 7
Martin Salinga 8
John R Erickson 9
Shuang Pi 10
Feng Xiong 9
Peng Lin 1
C X Li 11
Yu Chen 12
Shisheng Xiong 12
Brian D. Hoskins 13
Matthew W. Daniels 13
Advait Madhavan 13, 14
James A Liddle 13
Jabez J. McClelland 13
Yuchao Yang 15
Jennifer L. Rupp 16, 17
Stephen S. Nonnenmann 18
Kwang-Ting Cheng 19
N Gong 20
M A Lastras MontaƱo 21
Alec Talin 22
Alberto Salleo 23
Thomas Ferreira de Lima 25
Paul Prucnal 25
Alexander N. Tait 26
Yichen Shen 27
Huaiyu Meng 27
Charles Roques-Carmes 1
Z. Cheng 28, 29
H. Bhaskaran 30
Deep Jariwala 31
Hao-Zhe Wang 32
Jeffrey M. Shainline 26
Kenneth Segall 33
Jyisy Yang 2
Kaushik Roy 34
S. Datta 35
A. Raychowdhury 36
10
 
Lam Research, Fremont, CA, United States of America
27
 
Lightelligence, 268 Summer Street, Boston, MA 02210, United States of America
33
 
Department of Physics and Astronomy, Colgate University, NY 13346, United States of America
Publication typeJournal Article
Publication date2020-10-20
scimago Q2
wos Q2
SJR0.597
CiteScore6.2
Impact factor2.8
ISSN09574484, 13616528
General Chemistry
General Materials Science
Electrical and Electronic Engineering
Mechanical Engineering
Bioengineering
Mechanics of Materials
Abstract
Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of the capability of machine learning. Data-centric computing requires a revolution in hardware systems, since traditional digital computers based on transistors and the von Neumann architecture were not purposely designed for neuromorphic computing. A hardware platform based on emerging devices and new architecture is the hope for future computing with dramatically improved throughput and energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from materials selection, device optimization, circuit fabrication and system integration, to name a few. The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective of challenges and opportunities in this burgeoning field.
Found 
Found 

Top-30

Journals

1
2
3
4
5
Nature Communications
5 publications, 3.29%
Advanced Materials
3 publications, 1.97%
Nanomaterials
3 publications, 1.97%
Neural Networks
3 publications, 1.97%
Neuromorphic Computing and Engineering
3 publications, 1.97%
Nanophotonics
3 publications, 1.97%
IEEE Transactions on Applied Superconductivity
3 publications, 1.97%
Applied Physics Letters
2 publications, 1.32%
Sensors
2 publications, 1.32%
Journal of Low Power Electronics and Applications
2 publications, 1.32%
npj 2D Materials and Applications
2 publications, 1.32%
Advanced Intelligent Systems
2 publications, 1.32%
Advanced Electronic Materials
2 publications, 1.32%
Nanobiotechnology Reports
2 publications, 1.32%
IEEE Access
2 publications, 1.32%
Science advances
2 publications, 1.32%
ACS applied materials & interfaces
2 publications, 1.32%
Chemical Reviews
2 publications, 1.32%
Light: Science and Applications
1 publication, 0.66%
Applied Physics Reviews
1 publication, 0.66%
Journal of Applied Physics
1 publication, 0.66%
AIP Advances
1 publication, 0.66%
Systems
1 publication, 0.66%
Frontiers in Neuroscience
1 publication, 0.66%
Frontiers in Big Data
1 publication, 0.66%
Frontiers in Built Environment
1 publication, 0.66%
Nature Photonics
1 publication, 0.66%
MRS Bulletin
1 publication, 0.66%
Nature Reviews Materials
1 publication, 0.66%
1
2
3
4
5

Publishers

5
10
15
20
25
30
Institute of Electrical and Electronics Engineers (IEEE)
26 publications, 17.11%
Springer Nature
18 publications, 11.84%
Elsevier
17 publications, 11.18%
Wiley
14 publications, 9.21%
MDPI
13 publications, 8.55%
American Chemical Society (ACS)
9 publications, 5.92%
Pleiades Publishing
7 publications, 4.61%
Royal Society of Chemistry (RSC)
7 publications, 4.61%
IOP Publishing
6 publications, 3.95%
AIP Publishing
5 publications, 3.29%
Frontiers Media S.A.
3 publications, 1.97%
Walter de Gruyter
3 publications, 1.97%
Optica Publishing Group
3 publications, 1.97%
American Association for the Advancement of Science (AAAS)
3 publications, 1.97%
Taylor & Francis
2 publications, 1.32%
Hindawi Limited
2 publications, 1.32%
IGI Global
2 publications, 1.32%
Cambridge University Press
1 publication, 0.66%
Japan Society of Applied Physics
1 publication, 0.66%
SAGE
1 publication, 0.66%
American Physical Society (APS)
1 publication, 0.66%
Treatise
1 publication, 0.66%
Allerton Press
1 publication, 0.66%
World Scientific
1 publication, 0.66%
5
10
15
20
25
30
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
153
Share
Cite this
GOST |
Cite this
GOST Copy
Berggren K. K. et al. Roadmap on emerging hardware and technology for machine learning // Nanotechnology. 2020. Vol. 32. No. 1. p. 12002.
GOST all authors (up to 50) Copy
Berggren K. K., Xia Q., Likharev K. K., Strukov D., Jiang H., Mikolajick T., Querlioz D., Salinga M., Erickson J. R., Pi S., Xiong F., Lin P., Li C. X., Chen Yu., Xiong S., Hoskins B. D., Daniels M. W., Madhavan A., Liddle J. A., McClelland J. J., Yang Y., Rupp J. L., Nonnenmann S. S., Cheng K., Gong N., Lastras MontaƱo M. A., Talin A., Salleo A., Shastri B. J., Ferreira de Lima T., Prucnal P., Tait A. N., Shen Y., Meng H., Roques-Carmes C., Cheng Z., Bhaskaran H., Jariwala D., Wang H., Shainline J. M., Segall K., Yang J., Roy K., Datta S., Raychowdhury A. Roadmap on emerging hardware and technology for machine learning // Nanotechnology. 2020. Vol. 32. No. 1. p. 12002.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1088/1361-6528/aba70f
UR - https://doi.org/10.1088/1361-6528/aba70f
TI - Roadmap on emerging hardware and technology for machine learning
T2 - Nanotechnology
AU - Berggren, Karl K
AU - Xia, Qiangfei
AU - Likharev, Konstantin K.
AU - Strukov, Dmitri
AU - Jiang, Hao
AU - Mikolajick, Thomas
AU - Querlioz, Damien
AU - Salinga, Martin
AU - Erickson, John R
AU - Pi, Shuang
AU - Xiong, Feng
AU - Lin, Peng
AU - Li, C X
AU - Chen, Yu
AU - Xiong, Shisheng
AU - Hoskins, Brian D.
AU - Daniels, Matthew W.
AU - Madhavan, Advait
AU - Liddle, James A
AU - McClelland, Jabez J.
AU - Yang, Yuchao
AU - Rupp, Jennifer L.
AU - Nonnenmann, Stephen S.
AU - Cheng, Kwang-Ting
AU - Gong, N
AU - Lastras MontaƱo, M A
AU - Talin, Alec
AU - Salleo, Alberto
AU - Shastri, Bhavin J.
AU - Ferreira de Lima, Thomas
AU - Prucnal, Paul
AU - Tait, Alexander N.
AU - Shen, Yichen
AU - Meng, Huaiyu
AU - Roques-Carmes, Charles
AU - Cheng, Z.
AU - Bhaskaran, H.
AU - Jariwala, Deep
AU - Wang, Hao-Zhe
AU - Shainline, Jeffrey M.
AU - Segall, Kenneth
AU - Yang, Jyisy
AU - Roy, Kaushik
AU - Datta, S.
AU - Raychowdhury, A.
PY - 2020
DA - 2020/10/20
PB - IOP Publishing
SP - 12002
IS - 1
VL - 32
PMID - 32679577
SN - 0957-4484
SN - 1361-6528
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2020_Berggren,
author = {Karl K Berggren and Qiangfei Xia and Konstantin K. Likharev and Dmitri Strukov and Hao Jiang and Thomas Mikolajick and Damien Querlioz and Martin Salinga and John R Erickson and Shuang Pi and Feng Xiong and Peng Lin and C X Li and Yu Chen and Shisheng Xiong and Brian D. Hoskins and Matthew W. Daniels and Advait Madhavan and James A Liddle and Jabez J. McClelland and Yuchao Yang and Jennifer L. Rupp and Stephen S. Nonnenmann and Kwang-Ting Cheng and N Gong and M A Lastras MontaƱo and Alec Talin and Alberto Salleo and Bhavin J. Shastri and Thomas Ferreira de Lima and Paul Prucnal and Alexander N. Tait and Yichen Shen and Huaiyu Meng and Charles Roques-Carmes and Z. Cheng and H. Bhaskaran and Deep Jariwala and Hao-Zhe Wang and Jeffrey M. Shainline and Kenneth Segall and Jyisy Yang and Kaushik Roy and S. Datta and A. Raychowdhury},
title = {Roadmap on emerging hardware and technology for machine learning},
journal = {Nanotechnology},
year = {2020},
volume = {32},
publisher = {IOP Publishing},
month = {oct},
url = {https://doi.org/10.1088/1361-6528/aba70f},
number = {1},
pages = {12002},
doi = {10.1088/1361-6528/aba70f}
}
MLA
Cite this
MLA Copy
Berggren, Karl K., et al. ā€œRoadmap on emerging hardware and technology for machine learning.ā€ Nanotechnology, vol. 32, no. 1, Oct. 2020, p. 12002. https://doi.org/10.1088/1361-6528/aba70f.