том 55 издание 20 страницы 204004

Exact percolation probabilities for a square lattice: site percolation on a plane, cylinder, and torus

Тип публикацииJournal Article
Дата публикации2022-04-20
scimago Q2
wos Q2
БС1
SJR0.659
CiteScore3.8
Impact factor2.1
ISSN17518113, 17518121
General Physics and Astronomy
Statistical and Nonlinear Physics
Statistics and Probability
Mathematical Physics
Modeling and Simulation
Краткое описание

We have found analytical expressions (polynomials) of the percolation probability for site percolation on a square lattice of size L × L sites when considering a plane (the crossing probability in a given direction), a cylinder (spanning probability), and a torus (wrapping probability along one direction). Since some polynomials are extremely cumbersome, they are presented as separate files in supplemental material. The system sizes for which this was feasible varied up to L = 17 for a plane, up to L = 16 for a cylinder, and up to L = 12 for a torus. To obtain a percolation probability polynomial, all possible combinations of occupied and empty sites have to be taken into account. However, using dynamic programming along with some ideas related to the topology, we offer an algorithm which allows a significant reduction in the number of configurations requiring consideration. A rigorous formal description of the algorithm is presented. Divisibility properties of the polynomials have been rigorously proved. Reliability of the polynomials obtained have been confirmed by the divisibility tests. The wrapping probability polynomials on a torus provide a better estimate of the percolation threshold than that from the spanning probability polynomials. Surprisingly, even a naive finite size scaling analysis allows an estimate to be obtained of the percolation threshold p c = 0.592 69.

Найдено 
Найдено 

Топ-30

Журналы

1
Chaos
1 публикация, 33.33%
Entropy
1 публикация, 33.33%
New Astronomy
1 публикация, 33.33%
1

Издатели

1
AIP Publishing
1 публикация, 33.33%
MDPI
1 публикация, 33.33%
Elsevier
1 публикация, 33.33%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
4
Поделиться
Цитировать
ГОСТ |
Цитировать
Akhunzhanov R. K., Eserkepov A. V., Tarasevich Y. I. Exact percolation probabilities for a square lattice: site percolation on a plane, cylinder, and torus // Journal of Physics A: Mathematical and Theoretical. 2022. Vol. 55. No. 20. p. 204004.
ГОСТ со всеми авторами (до 50) Скопировать
Akhunzhanov R. K., Eserkepov A. V., Tarasevich Y. I. Exact percolation probabilities for a square lattice: site percolation on a plane, cylinder, and torus // Journal of Physics A: Mathematical and Theoretical. 2022. Vol. 55. No. 20. p. 204004.
RIS |
Цитировать
TY - JOUR
DO - 10.1088/1751-8121/ac61b8
UR - https://iopscience.iop.org/article/10.1088/1751-8121/ac61b8
TI - Exact percolation probabilities for a square lattice: site percolation on a plane, cylinder, and torus
T2 - Journal of Physics A: Mathematical and Theoretical
AU - Akhunzhanov, Renat K.
AU - Eserkepov, Andrei V.
AU - Tarasevich, Yuri I.
PY - 2022
DA - 2022/04/20
PB - IOP Publishing
SP - 204004
IS - 20
VL - 55
SN - 1751-8113
SN - 1751-8121
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Akhunzhanov,
author = {Renat K. Akhunzhanov and Andrei V. Eserkepov and Yuri I. Tarasevich},
title = {Exact percolation probabilities for a square lattice: site percolation on a plane, cylinder, and torus},
journal = {Journal of Physics A: Mathematical and Theoretical},
year = {2022},
volume = {55},
publisher = {IOP Publishing},
month = {apr},
url = {https://iopscience.iop.org/article/10.1088/1751-8121/ac61b8},
number = {20},
pages = {204004},
doi = {10.1088/1751-8121/ac61b8}
}
MLA
Цитировать
Akhunzhanov, Renat K., et al. “Exact percolation probabilities for a square lattice: site percolation on a plane, cylinder, and torus.” Journal of Physics A: Mathematical and Theoretical, vol. 55, no. 20, Apr. 2022, p. 204004. https://iopscience.iop.org/article/10.1088/1751-8121/ac61b8.