Human sodium current voltage-dependence at physiological temperature measured by coupling patch-clamp experiment to a mathematical model

Abrasheva V.O., Kovalenko S.G., Slotvitsky M., Scherbina S.A., Aitova A.A., Frolova S., Tsvelaya V., Syunyaev R.A.
Publication typePosted Content
Publication date2023-06-07
Abstract

Voltage-gated sodium channels are crucial to action potential propagation in excitable tissues. Voltage-clamp measurements of sodium current are very challenging and are usually performed at room temperature due to the high amplitude and fast activation of the current. In this study, we measured sodium current’s voltage dependence in stem-cell-derived cardiomyocytes at physiological temperature. Although apparent activation and inactivation curves measured as the sodium current amplitude dependence on voltage step is within the range reported in previous studies, we demonstrate a systematic error in our measurements that is due to deviation of membrane potential from the command potential of the amplifier. We show how this artifact can be accounted for by the computer simulation of the patch-clamp experiment. This patch-clamp model optimization technique yields a surprising result: −11.5 mV half-activation and −87 mV half-inactivation of the sodium current. Although the half-activation is strikingly different from what was previously believed to be typical for the cardiac sodium current, we show that this estimate explains conduction velocity dependence on extracellular potassium in hyperkalemic conditions.

Key points
  • Voltage gated sodium currents play a crucial role in excitable tissues including neurons, cardiac and skeletal muscles.

  • Measurement of sodium current is challenging because of its high amplitude and rapid kinetics, especially at physiological temperature.

  • We have used the patch-clamp technique to measure human sodium current voltage-dependence in human induced pluripotent stem cell-derived cardiomyocytes.

  • The patch-clamp data was processed by optimization of the model accounting for voltage-clamp experiment artifacts, revealing a large difference between apparent parameters of sodium current and the results of the optimization.

  • We conclude that actual sodium current activation is extremely depolarized in comparison to previous studies.

  • The new sodium current model provides a better understanding of action potential propagation, we demonstrate that it explains propagation in hyperkalemic conditions.

  • Fassina D., M. Costa C., Bishop M., Plank G., Whitaker J., Harding S.E., Niederer S.A.
    2023-03-01 citations by CoLab: 8 Abstract  
    Post myocardial infarction (MI) ventricles contain fibrotic tissue and may have disrupted electrical properties, both of which predispose to an increased risk of life-threatening arrhythmias. Application of epicardial patches obtained from human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a potential long-term therapy to treat heart failure resulting from post MI remodelling. However, whether the introduction of these patches is anti- or pro-arrhythmic has not been studied. We studied arrhythmic risk using in silico engineered heart tissue (EHT) patch engraftment on human post-MI ventricular models. Two patient models were studied, including one with a large dense scar and one with an apparent channel of preserved viability bordered on both sides by scar. In each heart model a virtual EHT patch was introduced as a layer of viable tissue overlying the scarred area, with hiPSC-CMs electrophysiological properties. The incidence of re-entrant and sustained activation in simulations with and without EHT patches was assessed and the arrhythmia inducibility compared in the context of different EHT patch properties (conduction velocity (CV) and action potential duration (APD)). The impact of the EHT patch on the likelihood of focal ectopic impulse propagation was estimated by assessing the minimum stimulus strength and duration required to generate a propagating impulse in the scar border zone (BZ) with and without patch. We uncovered two main mechanisms by which ventricular tachycardia (VT) risk could be either augmented or attenuated by the interaction of the patch with the tissue. In the case of isthmus-related VT, our simulations predict that EHT patches can prevent the induction of VT when the, generally longer, hiPSC-CMs APD is reduced towards more physiological values. In the case of large dense scar, we found that, an EHT patch with CV similar to the host myocardium does not promote VT, while EHT patches with lower CV increase the risk of VT, by promoting both non-sustained and sustained re-entry. Finally, our simulations indicate that electrically coupled EHT patches reduce the likelihood of propagation of focal ectopic impulses. The introduction of EHT patches as a treatment for heart failure has the potential to augment or attenuate the risk of ventricular arrhythmias, and variations in the anatomic configuration of the substrate, the functional properties of the BZ and the electrophysiologic properties of the patch itself will determine the overall impact. Planning for delivery of this therapy will need to consider the possible impact on arrhythmia.
    Slotvitsky M., Berezhnoy A., Scherbina S., Rimskaya B., Tsvelaya V., Balashov V., Efimov A.E., Agapov I., Agladze K.
    Micromachines scimago Q2 wos Q2 Open Access
    2022-12-25 citations by CoLab: 5 PDF Abstract  
    Induced pluripotent stem cells (iPSCs) constitute a potential source of patient-specific human cardiomyocytes for a cardiac cell replacement therapy via intramyocardial injections, providing a major benefit over other cell sources in terms of immune rejection. However, intramyocardial injection of the cardiomyocytes has substantial challenges related to cell survival and electrophysiological coupling with recipient tissue. Current methods of manipulating cell suspensions do not allow one to control the processes of adhesion of injected cells to the tissue and electrophysiological coupling with surrounding cells. In this article, we documented the possibility of influencing these processes using polymer kernels: biocompatible fiber fragments of subcellular size that can be adsorbed to a cell, thereby creating the minimum necessary adhesion foci to shape the cell and provide support for the organization of the cytoskeleton and the contractile apparatus prior to adhesion to the recipient tissue. Using optical excitation markers, the restoration of the excitability of cardiomyocytes in suspension upon adsorption of polymer kernels was shown. It increased the likelihood of the formation of a stable electrophysiological coupling in vitro. The obtained results may be considered as a proof of concept that the stochastic engraftment process of injected suspension cells can be controlled by smart biomaterials.
    Seibertz F., Rapedius M., Fakuade F.E., Tomsits P., Liutkute A., Cyganek L., Becker N., Majumder R., Clauß S., Fertig N., Voigt N.
    Communications Biology scimago Q1 wos Q1 Open Access
    2022-09-15 citations by CoLab: 38 PDF Abstract  
    Crucial conventional patch-clamp approaches to investigate cellular electrophysiology suffer from low-throughput and require considerable experimenter expertise. Automated patch-clamp (APC) approaches are more experimenter independent and offer high-throughput, but by design are predominantly limited to assays containing small, homogenous cells. In order to enable high-throughput APC assays on larger cells such as native cardiomyocytes isolated from mammalian hearts, we employed a fixed-well APC plate format. A broad range of detailed electrophysiological parameters including action potential, L-type calcium current and basal inward rectifier current were reliably acquired from isolated swine atrial and ventricular cardiomyocytes using APC. Effective pharmacological modulation also indicated that this technique is applicable for drug screening using native cardiomyocyte material. Furthermore, sequential acquisition of multiple parameters from a single cell was successful in a high throughput format, substantially increasing data richness and quantity per experimental run. When appropriately expanded, these protocols will provide a foundation for effective mechanistic and phenotyping studies of human cardiac electrophysiology. Utilizing scarce biopsy samples, regular high throughput characterization of primary cardiomyocytes using APC will facilitate drug development initiatives and personalized treatment strategies for a multitude of cardiac diseases. An altered automated patch-clamp (APC) approach enables high-throughput recordings from native pig cardiomyocytes and human iPSC-derived cardiomyocytes.
    Nguyen H.X., Wu T., Needs D., Zhang H., Perelli R.M., DeLuca S., Yang R., Tian M., Landstrom A.P., Henriquez C., Bursac N.
    Nature Communications scimago Q1 wos Q1 Open Access
    2022-02-02 citations by CoLab: 19 PDF Abstract  
    Therapies for cardiac arrhythmias could greatly benefit from approaches to enhance electrical excitability and action potential conduction in the heart by stably overexpressing mammalian voltage-gated sodium channels. However, the large size of these channels precludes their incorporation into therapeutic viral vectors. Here, we report a platform utilizing small-size, codon-optimized engineered prokaryotic sodium channels (BacNav) driven by muscle-specific promoters that significantly enhance excitability and conduction in rat and human cardiomyocytes in vitro and adult cardiac tissues from multiple species in silico. We also show that the expression of BacNav significantly reduces occurrence of conduction block and reentrant arrhythmias in fibrotic cardiac cultures. Moreover, functional BacNav channels are stably expressed in healthy mouse hearts six weeks following intravenous injection of self-complementary adeno-associated virus (scAAV) without causing any adverse effects on cardiac electrophysiology. The large diversity of prokaryotic sodium channels and experimental-computational platform reported in this study should facilitate the development and evaluation of BacNav-based gene therapies for cardiac conduction disorders. In this in vitro, in silico, and in vivo study Nguyen and colleagues show that specific and stable viral gene delivery of engineered prokaryotic voltage-gated sodium channels (BacNav) to cardiomyocytes can directly augment cardiac tissue excitability and conduction.
    Plank G., Loewe A., Neic A., Augustin C., Huang Y., Gsell M.A., Karabelas E., Nothstein M., Prassl A.J., Sánchez J., Seemann G., Vigmond E.J.
    2021-09-01 citations by CoLab: 132 Abstract  
    • We present the openCARP simulation environment as a solution that could foster the needs of large parts of the computational cardiac electrophysiology community. • Together with the Python-based carputils framework, openCARP allows developing and sharing simulation pipelines to increase reproducibility and productivity. • openCARP focuses on usability and performance for cardiac electrophysiology simulations. • We provide extensive training material and a community platform as a basis for a vivid user community. Background and Objective: Cardiac electrophysiology is a medical specialty with a long and rich tradition of computational modeling. Nevertheless, no community standard for cardiac electrophysiology simulation software has evolved yet. Here, we present the openCARP simulation environment as one solution that could foster the needs of large parts of this community. Methods and Results: openCARP and the Python-based carputils framework allow developing and sharing simulation pipelines which automate in silico experiments including all modeling and simulation steps to increase reproducibility and productivity. The continuously expanding openCARP user community is supported by tailored infrastructure. Documentation and training material facilitate access to this complementary research tool for new users. After a brief historic review, this paper summarizes requirements for a high-usability electrophysiology simulator and describes how openCARP fulfills them. We introduce the openCARP modeling workflow in a multi-scale example of atrial fibrillation simulations on single cell, tissue, organ and body level and finally outline future development potential. Conclusion: As an open simulator, openCARP can advance the computational cardiac electrophysiology field by making state-of-the-art simulations accessible. In combination with the carputils framework, it offers a tailored software solution for the scientific community and contributes towards increasing use, transparency, standardization and reproducibility of in silico experiments.
    King D.R., Entz M., Blair G.A., Crandell I., Hanlon A.L., Lin J., Hoeker G.S., Poelzing S.
    2021-03-04 citations by CoLab: 28 Abstract  
    The relationship between cardiac conduction velocity (CV) and extracellular potassium (K+) is biphasic, with modest hyperkalemia increasing CV and severe hyperkalemia slowing CV. Recent studies from our group suggest that elevating extracellular sodium (Na+) and calcium (Ca2+) can enhance CV by an extracellular pathway parallel to gap junctional coupling (GJC) called ephaptic coupling that can occur in the gap junction adjacent perinexus. However, it remains unknown whether these same interventions modulate CV as a function of K+. We hypothesize that Na+, Ca2+, and GJC can attenuate conduction slowing consequent to severe hyperkalemia. Elevating Ca2+ from 1.25 to 2.00 mM significantly narrowed perinexal width measured by transmission electron microscopy. Optically mapped, Langendorff-perfused guinea pig hearts perfused with increasing K+ revealed the expected biphasic CV-K+ relationship during perfusion with different Na+ and Ca2+ concentrations. Neither elevating Na+ nor Ca2+ alone consistently modulated the positive slope of CV-K+ or conduction slowing at 10-mM K+; however, combined Na+ and Ca2+ elevation significantly mitigated conduction slowing at 10-mM K+. Pharmacologic GJC inhibition with 30-μM carbenoxolone slowed CV without changing the shape of CV-K+ curves. A computational model of CV predicted that elevating Na+ and narrowing clefts between myocytes, as occur with perinexal narrowing, reduces the positive and negative slopes of the CV-K+ relationship but do not support a primary role of GJC or sodium channel conductance. These data demonstrate that combinatorial effects of Na+ and Ca2+ differentially modulate conduction during hyperkalemia, and enhancing determinants of ephaptic coupling may attenuate conduction changes in a variety of physiologic conditions.
    Montnach J., Lorenzini M., Lesage A., Simon I., Nicolas S., Moreau E., Marionneau C., Baró I., De Waard M., Loussouarn G.
    Scientific Reports scimago Q1 wos Q1 Open Access
    2021-02-08 citations by CoLab: 18 PDF Abstract  
    The patch-clamp technique and more recently the high throughput patch-clamp technique have contributed to major advances in the characterization of ion channels. However, the whole-cell voltage-clamp technique presents certain limits that need to be considered for robust data generation. One major caveat is that increasing current amplitude profoundly impacts the accuracy of the biophysical analyses of macroscopic ion currents under study. Using mathematical kinetic models of a cardiac voltage-gated sodium channel and a cardiac voltage-gated potassium channel, we demonstrated how large current amplitude and series resistance artefacts induce an undetected alteration in the actual membrane potential and affect the characterization of voltage-dependent activation and inactivation processes. We also computed how dose–response curves are hindered by high current amplitudes. This is of high interest since stable cell lines frequently demonstrating high current amplitudes are used for safety pharmacology using the high throughput patch-clamp technique. It is therefore critical to set experimental limits for current amplitude recordings to prevent inaccuracy in the characterization of channel properties or drug activity, such limits being different from one channel type to another. Based on the predictions generated by the kinetic models, we draw simple guidelines for good practice of whole-cell voltage-clamp recordings.
    Martinez-Moreno R., Selga E., Riuró H., Carreras D., Parnes M., Srinivasan C., Wangler M.F., Pérez G.J., Scornik F.S., Brugada R.
    2020-09-29 citations by CoLab: 16 PDF Abstract  
    Voltage-gated sodium (NaV) channels are transmembrane proteins that initiate and propagate neuronal and cardiac action potentials. NaV channel β subunits have been widely studied due to their modulatory role. Mice null for Scn1b, which encodes NaV β1 and β1b subunits, have defects in neuronal development and excitability, spontaneous generalized seizures, cardiac arrhythmias, and early mortality. A mutation in exon 3 of SCN1B, c.308A>T leading to β1_p.D103V and β1b_p.D103V, was previously found in a patient with a history of proarrhythmic conditions with progressive atrial standstill as well as cognitive and motor deficits accompanying structural brain abnormalities. We investigated whether β1 or β1b subunits carrying this mutation affect NaV1.5 and/or NaV1.1 currents using a whole cell patch-clamp technique in tsA201 cells. We observed a decrease in sodium current density in cells co-expressing NaV1.5 or NaV1.1 and β1D103V compared to β1WT. Interestingly, β1bD103V did not affect NaV1.1 sodium current density but induced a positive shift in the voltage dependence of inactivation and a faster recovery from inactivation compared to β1bWT. The β1bD103V isoform did not affect NaV1.5 current properties. Although the SCN1B_c.308A>T mutation may not be the sole cause of the patient’s symptoms, we observed a clear loss of function in both cardiac and brain sodium channels. Our results suggest that the mutant β1 and β1b subunits play a fundamental role in the observed electrical dysfunction.
    Lei C.L., Clerx M., Whittaker D.G., Gavaghan D.J., de Boer T.P., Mirams G.R.
    Mathematical models of ion channels, which constitute indispensable components of action potential models, are commonly constructed by fitting to whole-cell patch-clamp data. In a previous study, we fitted cell-specific models to hERG1a (Kv11.1) recordings simultaneously measured using an automated high-throughput system, and studied cell-cell variability by inspecting the resulting model parameters. However, the origin of the observed variability was not identified. Here, we study the source of variability by constructing a model that describes not just ion current dynamics, but the entire voltage-clamp experiment. The experimental artefact components of the model include: series resistance, membrane and pipette capacitance, voltage offsets, imperfect compensations made by the amplifier for these phenomena, and leak current. In this model, variability in the observations can be explained by either cell properties, measurement artefacts, or both. Remarkably, by assuming that variability arises exclusively from measurement artefacts, it is possible to explain a larger amount of the observed variability than when assuming cell-specific ion current kinetics. This assumption also leads to a smaller number of model parameters. This result suggests that most of the observed variability in patch-clamp data measured under the same conditions is caused by experimental artefacts, and hence can be compensated for in post-processing by using our model for the patch-clamp experiment. This study has implications for the question of the extent to which cell-cell variability in ion channel kinetics exists, and opens up routes for better correction of artefacts in patch-clamp data. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’.
    Slotvitsky M.M., Tsvelaya V.A., Podgurskaya A.D., Agladze K.I.
    Scientific Reports scimago Q1 wos Q1 Open Access
    2020-05-08 citations by CoLab: 16 PDF Abstract  
    AbstractHuman induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) serve as an indispensable platform for the study of human cardiovascular disease is human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs). While the possibility of reproducing rare pathologies, patient-specific selection of drugs, and other issues concerning single cardiomyocytes have been well studied, little attention has been paid to the properties of the whole syncytium of CMs, in which both the functionality of individual cells and the distribution of electrophysiological connections between them are essential. The aim of this work is to directly study the ability of hiPSC-CMs to form a functional syncytium that can stably conduct an excitation wave. For that purpose, syncytium forming hiPSC-CMs were harvested and seeded (transferred) on a new substrate on different days of differentiation. The excitation conduction in a sample was characterized by the stability of the wavefront using optical mapping data. We found that the cells transferred before the 20th day of differentiation were able to organize a functional syncytium capable of further development and stable excitation conduction at high stimulation frequencies, while the cells transferred after 20 days did not form a homogeneous syncytium, and multiple instabilities of the propagating wavefront were observed with the possibility of reentry formation.
    Paci M., Passini E., Klimas A., Severi S., Hyttinen J., Rodriguez B., Entcheva E.
    Biophysical Journal scimago Q1 wos Q2
    2020-05-01 citations by CoLab: 51 Abstract  
    High-throughput in vitro drug assays have been impacted by recent advances in human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) technology and by contact-free all-optical systems simultaneously measuring action potentials (APs) and Ca2+ transients (CaTrs). Parallel computational advances have shown that in silico simulations can predict drug effects with high accuracy. We combine these in vitro and in silico technologies and demonstrate the utility of high-throughput experimental data to refine in silico hiPSC-CM populations and to predict and explain drug action mechanisms. Optically obtained hiPSC-CM APs and CaTrs were used from spontaneous activity and under optical pacing in control and drug conditions at multiple doses. An updated version of the Paci2018 model was developed to refine the description of hiPSC-CM spontaneous electrical activity; a population of in silico hiPSC-CMs was constructed and calibrated using simultaneously recorded APs and CaTrs. We tested in silico five drugs (astemizole, dofetilide, ibutilide, bepridil, and diltiazem) and compared the outcomes to in vitro optical recordings. Our simulations showed that physiologically accurate population of models can be obtained by integrating AP and CaTr control records. Thus, constructed population of models correctly predicted the drug effects and occurrence of adverse episodes, even though the population was optimized only based on control data and in vitro drug testing data were not deployed during its calibration. Furthermore, the in silico investigation yielded mechanistic insights; e.g., through simulations, bepridil's more proarrhythmic action in adult cardiomyocytes compared to hiPSC-CMs could be traced to the different expression of ion currents in the two. Therefore, our work 1) supports the utility of all-optical electrophysiology in providing high-content data to refine experimentally calibrated populations of in silico hiPSC-CMs, 2) offers insights into certain limitations when translating results obtained in hiPSC-CMs to humans, and 3) shows the strength of combining high-throughput in vitro and population in silico approaches.
    Bartolucci C., Passini E., Hyttinen J., Paci M., Severi S.
    Frontiers in Physiology scimago Q2 wos Q2 Open Access
    2020-04-15 citations by CoLab: 36 PDF Abstract  
    The importance of electrolyte concentrations for cardiac function is well established. Electrolyte variations can lead to arrhythmias onset, due to their important role in the action potential (AP) genesis and in maintaining cell homeostasis. However, most of the human AP computer models available in literature were developed with constant electrolyte concentrations, and fail to simulate physiological changes induced by electrolyte variations. This is especially true for Ca2+, even in the O’Hara-Rudy model (ORd), one of the most widely used models in cardiac electrophysiology. Therefore, the present work develops a new human ventricular model (BPS2020), based on ORd, able to simulate the inverse dependence of AP duration (APD) on extracellular Ca2+ concentration ([Ca2+]o), and APD rate dependence at 4mM extracellular K+. The main changes needed with respect to ORd are: i) an increased sensitivity of L-type Ca2+ current inactivation to [Ca2+]o; ii) a single compartment description of the sarcoplasmic reticulum; iii) the replacement of Ca2+ release. BPS2020 is able to simulate the physiological APD-[Ca2+]o relationship, while also retaining the well-reproduced properties of ORd (APD rate dependence, restitution, accommodation and current block effects). We also used BPS2020 to generate an experimentally-calibrated population of models to investigate: i) the occurrence of repolarization abnormalities in response to hERG current block; ii) the rate adaptation variability; iii) the occurrence of alternans and delayed after-depolarizations at fast pacing. Our results indicate that we successfully developed an improved version of ORd, which can be used to investigate electrophysiological changes and pro-arrhythmic abnormalities induced by electrolyte variations and current block at multiple rates and at the population level.
    Tomek J., Bueno-Orovio A., Passini E., Zhou X., Minchole A., Britton O., Bartolucci C., Severi S., Shrier A., Virag L., Varro A., Rodriguez B.
    eLife scimago Q1 wos Q1 Open Access
    2019-12-24 citations by CoLab: 160 Abstract  
    Human-based modelling and simulations are becoming ubiquitous in biomedical science due to their ability to augment experimental and clinical investigations. Cardiac electrophysiology is one of the most advanced areas, with cardiac modelling and simulation being considered for virtual testing of pharmacological therapies and medical devices. Current models present inconsistencies with experimental data, which limit further progress. In this study, we present the design, development, calibration and independent validation of a human-based ventricular model (ToR-ORd) for simulations of electrophysiology and excitation-contraction coupling, from ionic to whole-organ dynamics, including the electrocardiogram. Validation based on substantial multiscale simulations supports the credibility of the ToR-ORd model under healthy and key disease conditions, as well as drug blockade. In addition, the process uncovers new theoretical insights into the biophysical properties of the L-type calcium current, which are critical for sodium and calcium dynamics. These insights enable the reformulation of L-type calcium current, as well as replacement of the hERG current model.
    Clerx M., Beattie K.A., Gavaghan D.J., Mirams G.R.
    Biophysical Journal scimago Q1 wos Q2
    2019-12-01 citations by CoLab: 56 Abstract  
    Abstract Mathematical models of ionic currents are used to study the electrophysiology of the heart, brain, gut, and several other organs. Increasingly, these models are being used predictively in the clinic, for example, to predict the risks and results of genetic mutations, pharmacological treatments, or surgical procedures. These safety-critical applications depend on accurate characterization of the underlying ionic currents. Four different methods can be found in the literature to fit voltage-sensitive ion channel models to whole-cell current measurements: method 1, fitting model equations directly to time-constant, steady-state, and I-V summary curves; method 2, fitting by comparing simulated versions of these summary curves to their experimental counterparts; method 3, fitting to the current traces themselves from a range of protocols; and method 4, fitting to a single current trace from a short and rapidly fluctuating voltage-clamp protocol. We compare these methods using a set of experiments in which hERG1a current was measured in nine Chinese hamster ovary cells. In each cell, the same sequence of fitting protocols was applied, as well as an independent validation protocol. We show that methods 3 and 4 provide the best predictions on the independent validation set and that short, rapidly fluctuating protocols like that used in method 4 can replace much longer conventional protocols without loss of predictive ability. Although data for method 2 are most readily available from the literature, we find it performs poorly compared to methods 3 and 4 both in accuracy of predictions and computational efficiency. Our results demonstrate how novel experimental and computational approaches can improve the quality of model predictions in safety-critical applications.
    • We do not take into account publications without a DOI.
    • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
    • Statistics recalculated weekly.

    Are you a researcher?

    Create a profile to get free access to personal recommendations for colleagues and new articles.
    Found error?