том 107 издание 5 номер публикации 052422

Depth analysis of variational quantum algorithms for the heat equation

Тип публикацииJournal Article
Дата публикации2023-05-26
scimago Q1
wos Q2
БС1
SJR1.033
CiteScore5.1
Impact factor2.9
ISSN10502947, 10941622, 24699926, 24699934
Краткое описание
Variational quantum algorithms are a promising tool for solving partial differential equations. The standard approach for its numerical solution is finite-difference schemes, which can be reduced to the linear algebra problem. We consider three approaches to solve the heat equation on a quantum computer. Using the direct variational method we minimize the expectation value of a Hamiltonian with its ground state being the solution of the problem under study. Typically, an exponential number of Pauli products in the Hamiltonian decomposition does not allow for the quantum speedup to be achieved. The Hadamard-test-based approach solves this problem, however, the performed simulations do not evidently prove that the Ansatz circuit has a polynomial depth with respect to the number of qubits. The Ansatz tree approach exploits an explicit form of the matrix that makes it possible to achieve an advantage over classical algorithms. In our numerical simulations with up to $n=11$ qubits, this method reveals the exponential speedup.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
Physical Review Research
3 публикации, 25%
Scientific Reports
2 публикации, 16.67%
Computers and Fluids
2 публикации, 16.67%
Physical Review A
1 публикация, 8.33%
Algorithms
1 публикация, 8.33%
Beilstein Journal of Nanotechnology
1 публикация, 8.33%
AIAA Journal
1 публикация, 8.33%
1
2
3

Издатели

1
2
3
4
American Physical Society (APS)
4 публикации, 33.33%
Springer Nature
2 публикации, 16.67%
Elsevier
2 публикации, 16.67%
MDPI
1 публикация, 8.33%
Beilstein-Institut
1 публикация, 8.33%
American Institute of Aeronautics and Astronautics (AIAA)
1 публикация, 8.33%
Association for Computing Machinery (ACM)
1 публикация, 8.33%
1
2
3
4
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
12
Поделиться
Цитировать
ГОСТ |
Цитировать
Guseynov N. M. et al. Depth analysis of variational quantum algorithms for the heat equation // Physical Review A. 2023. Vol. 107. No. 5. 052422
ГОСТ со всеми авторами (до 50) Скопировать
Guseynov N. M., ZHUKOV A. A., Pogosov W. V., LEBEDEV A. Depth analysis of variational quantum algorithms for the heat equation // Physical Review A. 2023. Vol. 107. No. 5. 052422
RIS |
Цитировать
TY - JOUR
DO - 10.1103/physreva.107.052422
UR - https://doi.org/10.1103/physreva.107.052422
TI - Depth analysis of variational quantum algorithms for the heat equation
T2 - Physical Review A
AU - Guseynov, N M
AU - ZHUKOV, A. A.
AU - Pogosov, Walter V.
AU - LEBEDEV, A.V.
PY - 2023
DA - 2023/05/26
PB - American Physical Society (APS)
IS - 5
VL - 107
SN - 1050-2947
SN - 1094-1622
SN - 2469-9926
SN - 2469-9934
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Guseynov,
author = {N M Guseynov and A. A. ZHUKOV and Walter V. Pogosov and A.V. LEBEDEV},
title = {Depth analysis of variational quantum algorithms for the heat equation},
journal = {Physical Review A},
year = {2023},
volume = {107},
publisher = {American Physical Society (APS)},
month = {may},
url = {https://doi.org/10.1103/physreva.107.052422},
number = {5},
pages = {052422},
doi = {10.1103/physreva.107.052422}
}