том 92 издание 6 номер публикации 062116

Jamming and percolation in generalized models of random sequential adsorption of lineark-mers on a square lattice

Dmitri O. Dubinin 2
Valeri V. Laptev 3
Тип публикацииJournal Article
Дата публикации2015-12-09
scimago Q2
wos Q1
БС1
SJR0.705
CiteScore4.2
Impact factor2.4
ISSN24700045, 24700053, 15393755, 15502376, 1063651X, 10953787
General Medicine
Краткое описание
The jamming and percolation for two generalized models of random sequential adsorption (RSA) of linear $k$-mers (particles occupying $k$ adjacent sites) on a square lattice are studied by means of Monte Carlo simulation. The classical random sequential adsorption (RSA) model assumes the absence of overlapping of the new incoming particle with the previously deposited ones. The first model LK$_d$ is a generalized variant of the RSA model for both $k$-mers and a lattice with defects. Some of the occupying $k$ adjacent sites are considered as insulating and some of the lattice sites are occupied by defects (impurities). For this model even a small concentration of defects can inhibit percolation for relatively long $k$-mers. The second model is the cooperative sequential adsorption (CSA) one, where, for each new $k$-mer, only a restricted number of lateral contacts $z$ with previously deposited $k$-mers is allowed. Deposition occurs in the case when $z\leq (1-d)z_m$ where $z_m=2(k+1)$ is the maximum numbers of the contacts of $k$-mer, and $d$ is the fraction of forbidden NN contacts. Percolation is observed only at some interval $k_{min}\leq k\leq k_{max}$ where the values $k_{min}$ and $k_{max}$ depend upon the fraction of forbidden contacts $d$. The value $k_{max}$ decreases as $d$ increases. A logarithmic dependence of the type $\log(k_{max})=a+bd$, where $a=-4.03 \pm 0.22$, $b=4.93 \pm 0.57 $, is obtained.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
9
Physical Review E
9 публикаций, 52.94%
Journal of Statistical Mechanics: Theory and Experiment
3 публикации, 17.65%
Physica A: Statistical Mechanics and its Applications
1 публикация, 5.88%
Journal of Physics: Conference Series
1 публикация, 5.88%
Physical Review Research
1 публикация, 5.88%
Journal of Statistical Physics
1 публикация, 5.88%
Journal of Physics A: Mathematical and Theoretical
1 публикация, 5.88%
1
2
3
4
5
6
7
8
9

Издатели

2
4
6
8
10
American Physical Society (APS)
10 публикаций, 58.82%
IOP Publishing
5 публикаций, 29.41%
Elsevier
1 публикация, 5.88%
Springer Nature
1 публикация, 5.88%
2
4
6
8
10
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
17
Поделиться
Цитировать
ГОСТ |
Цитировать
Lebovka N. et al. Jamming and percolation in generalized models of random sequential adsorption of lineark-mers on a square lattice // Physical Review E. 2015. Vol. 92. No. 6. 062116
ГОСТ со всеми авторами (до 50) Скопировать
Lebovka N., Tarasevich Y. I., Dubinin D. O., Laptev V. V., Vygornitskii N. Jamming and percolation in generalized models of random sequential adsorption of lineark-mers on a square lattice // Physical Review E. 2015. Vol. 92. No. 6. 062116
RIS |
Цитировать
TY - JOUR
DO - 10.1103/PhysRevE.92.062116
UR - https://doi.org/10.1103/PhysRevE.92.062116
TI - Jamming and percolation in generalized models of random sequential adsorption of lineark-mers on a square lattice
T2 - Physical Review E
AU - Lebovka, Nikolai
AU - Tarasevich, Yuri I.
AU - Dubinin, Dmitri O.
AU - Laptev, Valeri V.
AU - Vygornitskii, N.V
PY - 2015
DA - 2015/12/09
PB - American Physical Society (APS)
IS - 6
VL - 92
PMID - 26764641
SN - 2470-0045
SN - 2470-0053
SN - 1539-3755
SN - 1550-2376
SN - 1063-651X
SN - 1095-3787
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2015_Lebovka,
author = {Nikolai Lebovka and Yuri I. Tarasevich and Dmitri O. Dubinin and Valeri V. Laptev and N.V Vygornitskii},
title = {Jamming and percolation in generalized models of random sequential adsorption of lineark-mers on a square lattice},
journal = {Physical Review E},
year = {2015},
volume = {92},
publisher = {American Physical Society (APS)},
month = {dec},
url = {https://doi.org/10.1103/PhysRevE.92.062116},
number = {6},
pages = {062116},
doi = {10.1103/PhysRevE.92.062116}
}