Machine Learning for Trust in Internet of Vehicles and Privacy in Distributed Edge Networks
Тип публикации: Journal Article
Дата публикации: 2025-06-15
scimago Q1
wos Q1
БС1
SJR: 2.483
CiteScore: 16.3
Impact factor: 8.9
ISSN: 23274662, 23722541
Краткое описание
As the Internet of Vehicles (IoV) continues to evolve, the imperative for advanced algorithms capable of managing increased network demands, ensuring data security, and boosting overall system efficiency becomes crucial. This article introduces a novel suite of algorithms designed to enhance IoV system performance across multiple metrics. Our comprehensive simulations contrast the proposed system with three contemporary approaches the two-layer computing resource management (TCRM) model, the federated edge learning (FEL) approach, and the blockchain-based trust-value management (BTVM) approach. We demonstrate significant improvements: a latency reduction to as low as 90 ms, compared to 118 ms in TCRM, 125 ms in FEL, and 120 ms in BTVM; reliability in packet delivery with an enhancement from an initial 98% to 99.9%, compared to 98.5% in TCRM, 97.8% in FEL, and 99.5% in BTVM; resource utilization efficiency that surpasses baseline models by maintaining rates up to 85%, compared to their 60–65% in TCRM and FEL, and 75% in BTVM; and swift network response times peaking at just 50 ms, against 60 ms in TCRM, 65 ms in FEL, and 50 ms in BTVM. Additionally, our algorithms maintain robust data security levels, consistently achieving 100% effectiveness, compared to 99.2% in TCRM, 98.9% in FEL, and 99.5% in BTVM. These results underscore the proposed system’s potential to significantly outperform existing solutions, paving the way for more resilient and efficient IoV architectures. The integration of these algorithms into real-world IoV applications can substantially contribute to the advancement of intelligent transportation systems.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Всего цитирований:
2
Цитирований c 0:
0
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Ud Din I. et al. Machine Learning for Trust in Internet of Vehicles and Privacy in Distributed Edge Networks // IEEE Internet of Things Journal. 2025. Vol. 12. No. 12. pp. 21488-21495.
ГОСТ со всеми авторами (до 50)
Скопировать
Ud Din I., Khan K. H., Almogren A., Guizani M. Machine Learning for Trust in Internet of Vehicles and Privacy in Distributed Edge Networks // IEEE Internet of Things Journal. 2025. Vol. 12. No. 12. pp. 21488-21495.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/jiot.2025.3547595
UR - https://ieeexplore.ieee.org/document/10909112/
TI - Machine Learning for Trust in Internet of Vehicles and Privacy in Distributed Edge Networks
T2 - IEEE Internet of Things Journal
AU - Ud Din, Ikram
AU - Khan, Kamran Habib
AU - Almogren, Ahmad
AU - Guizani, Mohsen
PY - 2025
DA - 2025/06/15
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 21488-21495
IS - 12
VL - 12
SN - 2327-4662
SN - 2372-2541
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2025_Ud Din,
author = {Ikram Ud Din and Kamran Habib Khan and Ahmad Almogren and Mohsen Guizani},
title = {Machine Learning for Trust in Internet of Vehicles and Privacy in Distributed Edge Networks},
journal = {IEEE Internet of Things Journal},
year = {2025},
volume = {12},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jun},
url = {https://ieeexplore.ieee.org/document/10909112/},
number = {12},
pages = {21488--21495},
doi = {10.1109/jiot.2025.3547595}
}
Цитировать
MLA
Скопировать
Ud Din, Ikram, et al. “Machine Learning for Trust in Internet of Vehicles and Privacy in Distributed Edge Networks.” IEEE Internet of Things Journal, vol. 12, no. 12, Jun. 2025, pp. 21488-21495. https://ieeexplore.ieee.org/document/10909112/.
Профили