Epileptic Seizure Recognition Using Improved Modes Decomposition and Online Sequential Autoencoder Multi-Kernel Broad Learning System
Bhanja Kishor Swain
1
,
Susanta Kumar Rout
2
,
Mrutyunjaya Sahani
3, 4
,
P. S. Dash
5
,
Sanjib Kumar Panda
3, 4
Тип публикации: Journal Article
Дата публикации: 2025-03-15
scimago Q1
wos Q1
БС1
SJR: 1.039
CiteScore: 8.2
Impact factor: 4.5
ISSN: 1530437X, 15581748, 23799153
Краткое описание
In this article, improved variational mode decomposition (IVMD) and the online sequential autoencoder multi-kernel broad learning system (OSAEMKBLS) are integrated to recognize epileptic seizure (ES) epochs from both multichannel and single-channel electroencephalogram (EEG) recordings. The proposed IVMD extracts the optimum number of efficient band-limited intrinsic mode functions (BLIMFs) and the data fidelity factor ( $\alpha $ ) using the irregularity index-based Tsallis entropy as a cost function. The designed autoencoder in the proposed OSAEMKBLS architecture is utilized to extract the most elucidative unsupervised signatures from selected informative BLIMFs, chunk by chunk sequentially. These signatures are then fed into the novel supervised kernel trick-based broad learning system for the efficacious recognition of seizure epochs, based on the root mean square error (RMSE) optimal cost function. The efficacy of the proposed IVMD-OSAEMKBLS algorithm is evaluated using benchmark multichannel scalp EEG (sEEG) and single-channel EEG datasets. The proposed method demonstrates higher learning speed, lower computational complexity, better model generalization, and a lower false positive rate per hour (FPR/h) at 0.019. It achieves outstanding recognition accuracy at 99.98% and a short-event recognition time of 42 ms, compared to the IVMD-BLS, IVMD-OSBLS, and IVMD-OSMKBLS methods. Finally, reconfigurable field-programmable gate array (FPGA) hardware is employed to implement the novel IVMD-OSAEMKBLS, developing a computer-aided diagnosis (CAD) system for the automated diagnosis of ES patients. The integrity and expediency of the proposed algorithm endorse secure and admirable accomplishments in seizure detection and recognition.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Neurological Research
1 публикация, 50%
|
|
|
IEEE Sensors Journal
1 публикация, 50%
|
|
|
1
|
Издатели
|
1
|
|
|
Taylor & Francis
1 публикация, 50%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 50%
|
|
|
1
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Всего цитирований:
2
Цитирований c 2024:
2
(100%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Swain B. K. et al. Epileptic Seizure Recognition Using Improved Modes Decomposition and Online Sequential Autoencoder Multi-Kernel Broad Learning System // IEEE Sensors Journal. 2025. Vol. 25. No. 6. pp. 10454-10465.
ГОСТ со всеми авторами (до 50)
Скопировать
Swain B. K., Rout S. K., Sahani M., Dash P. S., Panda S. K. Epileptic Seizure Recognition Using Improved Modes Decomposition and Online Sequential Autoencoder Multi-Kernel Broad Learning System // IEEE Sensors Journal. 2025. Vol. 25. No. 6. pp. 10454-10465.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1109/jsen.2025.3532456
UR - https://ieeexplore.ieee.org/document/10858641/
TI - Epileptic Seizure Recognition Using Improved Modes Decomposition and Online Sequential Autoencoder Multi-Kernel Broad Learning System
T2 - IEEE Sensors Journal
AU - Swain, Bhanja Kishor
AU - Rout, Susanta Kumar
AU - Sahani, Mrutyunjaya
AU - Dash, P. S.
AU - Panda, Sanjib Kumar
PY - 2025
DA - 2025/03/15
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 10454-10465
IS - 6
VL - 25
SN - 1530-437X
SN - 1558-1748
SN - 2379-9153
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2025_Swain,
author = {Bhanja Kishor Swain and Susanta Kumar Rout and Mrutyunjaya Sahani and P. S. Dash and Sanjib Kumar Panda},
title = {Epileptic Seizure Recognition Using Improved Modes Decomposition and Online Sequential Autoencoder Multi-Kernel Broad Learning System},
journal = {IEEE Sensors Journal},
year = {2025},
volume = {25},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {mar},
url = {https://ieeexplore.ieee.org/document/10858641/},
number = {6},
pages = {10454--10465},
doi = {10.1109/jsen.2025.3532456}
}
Цитировать
MLA
Скопировать
Swain, Bhanja Kishor, et al. “Epileptic Seizure Recognition Using Improved Modes Decomposition and Online Sequential Autoencoder Multi-Kernel Broad Learning System.” IEEE Sensors Journal, vol. 25, no. 6, Mar. 2025, pp. 10454-10465. https://ieeexplore.ieee.org/document/10858641/.