том 11 издание 3 страницы 1001-1012

A Multi-Modal Assessment Framework for Comparison of Specialized Deep Learning and General-Purpose Large Language Models

Mohammad Nadeem 1
Ahmed Abrahim Alzahrani 4
M. K. Al Zahrani 4
Javier Del Ser 5
Тип публикацииJournal Article
Дата публикации2025-06-01
scimago Q1
wos Q1
БС1
SJR1.571
CiteScore15.3
Impact factor5.7
ISSN23327790, 23722096
Краткое описание
Recent years have witnessed tremendous advancements in Al tools (e.g., ChatGPT, GPT-4, and Bard), driven by the growing power, reasoning, and efficiency of Large Language Models (LLMs). LLMs have been shown to excel in tasks ranging from poem writing and coding to essay generation and puzzle solving. Despite their proficiency in general queries, specialized tasks such as metaphor understanding and fake news detection often require finely tuned models, posing a comparison challenge with specialized Deep Learning (DL). We propose an assessment framework to compare task-specific intelligence with general-purpose LLMs on suicide and depression tendency identification. For this purpose, we trained two DL models on a suicide and depression detection dataset, followed by testing their performance on a test set. Afterward, the same test dataset is used to evaluate the performance of four LLMs (GPT-3.5, GPT-4, Google Bard, and MS Bing) using four classification metrics. The BERT-based DL model performed the best among all, with a testing accuracy of 94.61%, while GPT-4 was the runner-up with accuracy 92.5%. Results demonstrate that LLMs do not outperform the specialized DL models but are able to achieve comparable performance, making them a decent option for downstream tasks without specialized training. However, LLMs outperformed specialized models on the reduced dataset.
Найдено 
Найдено 

Топ-30

Журналы

1
Intelligent Medicine
1 публикация, 100%
1

Издатели

1
Elsevier
1 публикация, 100%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
1
Поделиться
Цитировать
ГОСТ |
Цитировать
Nadeem M. et al. A Multi-Modal Assessment Framework for Comparison of Specialized Deep Learning and General-Purpose Large Language Models // IEEE Transactions on Big Data. 2025. Vol. 11. No. 3. pp. 1001-1012.
ГОСТ со всеми авторами (до 50) Скопировать
Nadeem M., Sohail S. S., Madsen D. Ø., Alzahrani A. A., Zahrani M. K. A., Ser J. D., Muhammad K. A Multi-Modal Assessment Framework for Comparison of Specialized Deep Learning and General-Purpose Large Language Models // IEEE Transactions on Big Data. 2025. Vol. 11. No. 3. pp. 1001-1012.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/tbdata.2025.3536937
UR - https://ieeexplore.ieee.org/document/10858454/
TI - A Multi-Modal Assessment Framework for Comparison of Specialized Deep Learning and General-Purpose Large Language Models
T2 - IEEE Transactions on Big Data
AU - Nadeem, Mohammad
AU - Sohail, Shahab Saquib
AU - Madsen, Dag Øivind
AU - Alzahrani, Ahmed Abrahim
AU - Zahrani, M. K. Al
AU - Ser, Javier Del
AU - Muhammad, Khan
PY - 2025
DA - 2025/06/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 1001-1012
IS - 3
VL - 11
SN - 2332-7790
SN - 2372-2096
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2025_Nadeem,
author = {Mohammad Nadeem and Shahab Saquib Sohail and Dag Øivind Madsen and Ahmed Abrahim Alzahrani and M. K. Al Zahrani and Javier Del Ser and Khan Muhammad},
title = {A Multi-Modal Assessment Framework for Comparison of Specialized Deep Learning and General-Purpose Large Language Models},
journal = {IEEE Transactions on Big Data},
year = {2025},
volume = {11},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jun},
url = {https://ieeexplore.ieee.org/document/10858454/},
number = {3},
pages = {1001--1012},
doi = {10.1109/tbdata.2025.3536937}
}
MLA
Цитировать
Nadeem, Mohammad, et al. “A Multi-Modal Assessment Framework for Comparison of Specialized Deep Learning and General-Purpose Large Language Models.” IEEE Transactions on Big Data, vol. 11, no. 3, Jun. 2025, pp. 1001-1012. https://ieeexplore.ieee.org/document/10858454/.