том 44 издание 6 страницы 3048-3068

Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks

Тип публикацииJournal Article
Дата публикации2022-06-01
scimago Q1
wos Q1
БС1
SJR3.910
CiteScore35.0
Impact factor18.6
ISSN01628828, 21609292, 19393539
Computational Theory and Mathematics
Artificial Intelligence
Applied Mathematics
Software
Computer Vision and Pattern Recognition
Краткое описание
Deep neural models, in recent years, have been successful in almost every field, even solving the most complex problem statements. However, these models are huge in size with millions (and even billions) of parameters, demanding heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of labeled data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called ‘Student-Teacher’ (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically used for vision tasks. In general, we investigate some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.
Найдено 
Найдено 

Топ-30

Журналы

5
10
15
20
25
30
Lecture Notes in Computer Science
29 публикаций, 4.95%
IEEE Transactions on Pattern Analysis and Machine Intelligence
17 публикаций, 2.9%
IEEE Access
16 публикаций, 2.73%
Expert Systems with Applications
14 публикаций, 2.39%
IEEE Transactions on Neural Networks and Learning Systems
14 публикаций, 2.39%
IEEE Transactions on Circuits and Systems for Video Technology
12 публикаций, 2.05%
Scientific Reports
10 публикаций, 1.71%
Neurocomputing
10 публикаций, 1.71%
Applied Intelligence
9 публикаций, 1.54%
IEEE Transactions on Instrumentation and Measurement
9 публикаций, 1.54%
IEEE Transactions on Geoscience and Remote Sensing
9 публикаций, 1.54%
Engineering Applications of Artificial Intelligence
8 публикаций, 1.37%
IEEE Transactions on Image Processing
7 публикаций, 1.19%
Applied Sciences (Switzerland)
7 публикаций, 1.19%
Sensors
7 публикаций, 1.19%
Neural Networks
7 публикаций, 1.19%
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
7 публикаций, 1.19%
IEEE Internet of Things Journal
7 публикаций, 1.19%
IEEE Sensors Journal
6 публикаций, 1.02%
Electronics (Switzerland)
6 публикаций, 1.02%
IEEE Transactions on Intelligent Transportation Systems
6 публикаций, 1.02%
Remote Sensing
5 публикаций, 0.85%
IEEE Journal of Biomedical and Health Informatics
5 публикаций, 0.85%
IEEE Transactions on Multimedia
5 публикаций, 0.85%
Image and Vision Computing
5 публикаций, 0.85%
IEEE Transactions on Artificial Intelligence
5 публикаций, 0.85%
Neural Computing and Applications
4 публикации, 0.68%
IEEE Robotics and Automation Letters
4 публикации, 0.68%
Computers in Biology and Medicine
4 публикации, 0.68%
5
10
15
20
25
30

Издатели

50
100
150
200
250
300
Institute of Electrical and Electronics Engineers (IEEE)
266 публикаций, 45.39%
Elsevier
117 публикаций, 19.97%
Springer Nature
108 публикаций, 18.43%
MDPI
41 публикация, 7%
Association for Computing Machinery (ACM)
12 публикаций, 2.05%
Wiley
7 публикаций, 1.19%
IOP Publishing
6 публикаций, 1.02%
Taylor & Francis
5 публикаций, 0.85%
SAGE
3 публикации, 0.51%
American Chemical Society (ACS)
2 публикации, 0.34%
Oxford University Press
2 публикации, 0.34%
Frontiers Media S.A.
2 публикации, 0.34%
PeerJ
2 публикации, 0.34%
Now Publishers
1 публикация, 0.17%
Cold Spring Harbor Laboratory
1 публикация, 0.17%
Pleiades Publishing
1 публикация, 0.17%
Gazi University
1 публикация, 0.17%
Science in China Press
1 публикация, 0.17%
Korean Institute of Communications Information Sciences
1 публикация, 0.17%
Public Library of Science (PLoS)
1 публикация, 0.17%
SPIE-Intl Soc Optical Eng
1 публикация, 0.17%
Institute of Mathematical Statistics
1 публикация, 0.17%
World Scientific
1 публикация, 0.17%
IGI Global
1 публикация, 0.17%
Institution of Engineering and Technology (IET)
1 публикация, 0.17%
50
100
150
200
250
300
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
586
Поделиться
Цитировать
ГОСТ |
Цитировать
Wang L., Yoon K. Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022. Vol. 44. No. 6. pp. 3048-3068.
ГОСТ со всеми авторами (до 50) Скопировать
Wang L., Yoon K. Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2022. Vol. 44. No. 6. pp. 3048-3068.
RIS |
Цитировать
TY - JOUR
DO - 10.1109/tpami.2021.3055564
UR - https://doi.org/10.1109/tpami.2021.3055564
TI - Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks
T2 - IEEE Transactions on Pattern Analysis and Machine Intelligence
AU - Wang, Lin
AU - Yoon, Kuk-Jin
PY - 2022
DA - 2022/06/01
PB - Institute of Electrical and Electronics Engineers (IEEE)
SP - 3048-3068
IS - 6
VL - 44
PMID - 33513099
SN - 0162-8828
SN - 2160-9292
SN - 1939-3539
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Wang,
author = {Lin Wang and Kuk-Jin Yoon},
title = {Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
year = {2022},
volume = {44},
publisher = {Institute of Electrical and Electronics Engineers (IEEE)},
month = {jun},
url = {https://doi.org/10.1109/tpami.2021.3055564},
number = {6},
pages = {3048--3068},
doi = {10.1109/tpami.2021.3055564}
}
MLA
Цитировать
Wang, Lin, and Kuk-Jin Yoon. “Knowledge Distillation and Student-Teacher Learning for Visual Intelligence: A Review and New Outlooks.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 6, Jun. 2022, pp. 3048-3068. https://doi.org/10.1109/tpami.2021.3055564.