Detection of Big Animals on Images with Road Scenes using Deep Learning

Yudin D., Sotnikov A., Krishtopik A.
Тип документаProceedings Article
Дата публикации2019-09-02
Название журнала
Издатель
Краткое описание
The recognition of big animals on the images with road scenes has received little attention in modern research. There are very few specialized data sets for this task. Popular open data sets contain many images of big animals, but the most part of them is not correspond to road scenes that is necessary for on-board vision systems of unmanned vehicles. The paper describes the preparation of such a specialized data set based on Google Open Images and COCO datasets. The resulting data set contains about 20000 images of big animals of 10 classes: "Bear", "Fox", "Dog", "Horse", "Goat", "Sheep", "Cow", "Zebra", "Elephant", "Giraffe". Deep learning approaches to detect these objects are researched in the paper. Authors trained and tested modern neural network architectures YOLOv3, RetinaNet R-50-FPN, Faster R-CNN R-50-FPN, Cascade R-CNN R-50-FPN. To compare the approaches the mean average precision (mAP) was determined at IoU≥50%, also their speed was calculated for input tensor sizes 640x384x3. The highest quality metrics are demonstrated by architecture YOLOv3 as for ten classes (0.78 mAP) and one joint class (0.92 mAP) detection with speed more 35 fps on NVidia Tesla V-100 32GB video card. At the same hardware, the RetinaNet R-50-FPN architecture provided recognition speed of more than 44 fps and a 13% lower mAP. The software implementation was done using the Keras and PyTorch deep learning libraries and NVidia CUDA technology. The proposed data set and neural network approach to recognizing big animals on images have shown their effectiveness and can be used in the on-board vision systems of driverless cars or in driver assistant systems.
Пристатейные ссылки: 27
Цитируется в публикациях: 1
Object Detection with Deep Neural Networks for Reinforcement Learning in the Task of Autonomous Vehicles Path Planning at the Intersection
Yudin D.A., Skrynnik A., Krishtopik A., Belkin I., Panov A.I.
Q3 Optical Memory and Neural Networks (Information Optics) 2019 цитирований: 17
DETECTION OF A HUMAN HEAD ON A LOW-QUALITY IMAGE AND ITS SOFTWARE IMPLEMENTATION
Yudin D., Ivanov A., Shchendrygin M.
The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences 2019 цитирований: 4
Loose Animal-Vehicle Accidents Mitigation: Vision and Challenges
Saad W., Alsayyari A.
2019 цитирований: 3
Cascade R-CNN: Delving Into High Quality Object Detection
Cai Z., Vasconcelos N.
2018 цитирований: 1161
Focal Loss for Dense Object Detection
Lin T., Goyal P., Girshick R., He K., Dollar P.
2017 цитирований: 3654
Fast animal detection in UAV images using convolutional neural networks
Kellenberger B., Volpi M., Tuia D.
2017 цитирований: 30
Kangaroo Vehicle Collision Detection Using Deep Semantic Segmentation Convolutional Neural Network
Saleh K., Hossny M., Nahavandi S.
2016 цитирований: 17
Animal Detection From Highly Cluttered Natural Scenes Using Spatiotemporal Object Region Proposals and Patch Verification
Zhang Z., He Z., Cao G., Cao W.
Q1 IEEE Transactions on Multimedia 2016 цитирований: 60
Animal-Vehicle Collision Mitigation System for Automated Vehicles
Mammeri A., Zhou D., Boukerche A.
Q1 IEEE Transactions on Systems, Man, and Cybernetics: Systems 2016 цитирований: 26
Fast R-CNN
Girshick R.
2015 цитирований: 9294
Cats and dogs
Parkhi O.M., Vedaldi A., Zisserman A., Jawahar C.V.
2012 цитирований: 248
The Pascal Visual Object Classes (VOC) Challenge
Everingham M., Van Gool L., Williams C.K., Winn J., Zisserman A.
Q1 International Journal of Computer Vision 2009 цитирований: 7736
MAP
Beitzel S.M., Jensen E.C., Frieder O.
2009 цитирований: 10
ImageNet: A large-scale hierarchical image database
Deng J., Dong W., Socher R., Li L., Kai Li, Li Fei-Fei
2009 цитирований: 11794
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Yudin D., Sotnikov A., Krishtopik A. Detection of Big Animals on Images with Road Scenes using Deep Learning // 2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI). 2019.
RIS |
Цитировать

TY - CPAPER

DO - 10.1109/ic-aiai48757.2019.00028

UR - http://dx.doi.org/10.1109/IC-AIAI48757.2019.00028

TI - Detection of Big Animals on Images with Road Scenes using Deep Learning

T2 - 2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI)

AU - Yudin, Dmitry

AU - Sotnikov, Anton

AU - Krishtopik, Andrey

PY - 2019

DA - 2019/09

PB - IEEE

ER -

BibTex |
Цитировать

@inproceedings{Yudin_2019,

doi = {10.1109/ic-aiai48757.2019.00028},

url = {https://doi.org/10.1109%2Fic-aiai48757.2019.00028},

year = 2019,

month = {sep},

publisher = {{IEEE}},

author = {Dmitry Yudin and Anton Sotnikov and Andrey Krishtopik},

title = {Detection of Big Animals on Images with Road Scenes using Deep Learning},

booktitle = {2019 International Conference on Artificial Intelligence: Applications and Innovations ({IC}-{AIAI})}

}

MLA
Цитировать
Yudin, Dmitry, Anton Sotnikov, and Andrey Krishtopik. “Detection of Big Animals on Images with Road Scenes Using Deep Learning.” 2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI) (2019): n. pag. Crossref. Web.