Open Access
Open access
Science, volume 382, issue 6669, pages 430-434

Observation and control of hybrid spin-wave–Meissner-current transport modes

Publication typeJournal Article
Publication date2023-10-27
Journal: Science
scimago Q1
SJR11.902
CiteScore61.1
Impact factor44.7
ISSN00368075, 10959203
Multidisciplinary
Abstract

Superconductors are materials with zero electrical resistivity and the ability to expel magnetic fields, which is known as the Meissner effect. Their dissipationless diamagnetic response is central to magnetic levitation and circuits such as quantum interference devices. In this work, we used superconducting diamagnetism to shape the magnetic environment governing the transport of spin waves—collective spin excitations in magnets that are promising on-chip signal carriers—in a thin-film magnet. Using diamond-based magnetic imaging, we observed hybridized spin-wave–Meissner-current transport modes with strongly altered, temperature-tunable wavelengths and then demonstrated local control of spin-wave refraction using a focused laser. Our results demonstrate the versatility of superconductor-manipulated spin-wave transport and have potential applications in spin-wave gratings, filters, crystals, and cavities.

Top-30

Journals

1
2
3
4
5
1
2
3
4
5

Publishers

1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?