Open Access
Open access
Science, volume 334, issue 6062, pages 1530-1533

Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell

Publication typeJournal Article
Publication date2011-12-16
Journal: Science
scimago Q1
SJR11.902
CiteScore61.1
Impact factor44.7
ISSN00368075, 10959203
Multidisciplinary
Abstract
An experimental solar cell productively uses an extra fraction of high-energy light typically lost as heat. Multiple exciton generation (MEG) is a process that can occur in semiconductor nanocrystals, or quantum dots (QDs), whereby absorption of a photon bearing at least twice the bandgap energy produces two or more electron-hole pairs. Here, we report on photocurrent enhancement arising from MEG in lead selenide (PbSe) QD-based solar cells, as manifested by an external quantum efficiency (the spectrally resolved ratio of collected charge carriers to incident photons) that peaked at 114 ± 1% in the best device measured. The associated internal quantum efficiency (corrected for reflection and absorption losses) was 130%. We compare our results with transient absorption measurements of MEG in isolated PbSe QDs and find reasonable agreement. Our findings demonstrate that MEG charge carriers can be collected in suitably designed QD solar cells, providing ample incentive to better understand MEG within isolated and coupled QDs as a research path to enhancing the efficiency of solar light harvesting technologies.

Top-30

Journals

10
20
30
40
50
60
10
20
30
40
50
60

Publishers

50
100
150
200
250
300
350
400
50
100
150
200
250
300
350
400
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?