Open Access
Open access
volume 367 issue 6477 pages 537-542

One-dimensional van der Waals heterostructures

Rong Xiang 1
T. Inoue 1
Yuta Sato 3
Ming Liu 1
Daiming Tang 4
Jia Guo 1, 6
Kaoru Hisama 1
Tatsuro Ogamoto 1
Hayato Arai 1
Yu Kobayashi 7
Hao Zhang 1
Bo Hou 8
Mina Maruyama 10
SUSUMU OKADA 10
Yan Li 1, 6
Jing Kong 11
Kazu Suenaga 3
Publication typeJournal Article
Publication date2020-01-31
scimago Q1
wos Q1
SJR10.416
CiteScore48.4
Impact factor45.8
ISSN00368075, 10959203
Multidisciplinary
Abstract
Growing coaxial nanotubes Heterostructures of highly crystalline two-dimensional materials such as graphene, hexagonal boron nitride (hBN), and molybdenum disulfide (MoS2) are now routinely assembled from films or grown as layers. Xiang et al. report the growth of one-dimensional analogs of these heterostructures on single-walled carbon nanotubes (SWCNTs) through a chemical vapor deposition (see the Perspective by Gogotsi and Yakobson). Single-crystalline monolayers or multilayers of hBN or MoS2 were grown that maintained the electrical conductivity of the SWCNT. A monolayer of MoS2 was grown on a trilayer of hBN that encapsulated a SWCNT. Science, this issue p. 537; see also p. 506 Coaxial crystals of boron nitride, molybdenum disulfide, or both were grown on single-walled carbon nanotubes. We present the experimental synthesis of one-dimensional (1D) van der Waals heterostructures, a class of materials where different atomic layers are coaxially stacked. We demonstrate the growth of single-crystal layers of hexagonal boron nitride (BN) and molybdenum disulfide (MoS2) crystals on single-walled carbon nanotubes (SWCNTs). For the latter, larger-diameter nanotubes that overcome strain effect were more readily synthesized. We also report a 5-nanometer–diameter heterostructure consisting of an inner SWCNT, a middle three-layer BN nanotube, and an outer MoS2 nanotube. Electron diffraction verifies that all shells in the heterostructures are single crystals. This work suggests that all of the materials in the current 2D library could be rolled into their 1D counterparts and a plethora of function-designable 1D heterostructures could be realized.
Found 
Found 

Top-30

Journals

5
10
15
20
25
30
ACS Nano
26 publications, 7.62%
Small
14 publications, 4.11%
Advanced Functional Materials
11 publications, 3.23%
Journal of the American Chemical Society
10 publications, 2.93%
Advanced Materials
10 publications, 2.93%
Physical Review B
9 publications, 2.64%
Nature Communications
9 publications, 2.64%
Nano Letters
8 publications, 2.35%
ACS applied materials & interfaces
8 publications, 2.35%
Nanoscale
7 publications, 2.05%
Applied Physics Letters
6 publications, 1.76%
Carbon
6 publications, 1.76%
Journal of Applied Physics
4 publications, 1.17%
Journal of Materials Research
4 publications, 1.17%
International Journal of Hydrogen Energy
4 publications, 1.17%
Small Methods
4 publications, 1.17%
ACS Applied Electronic Materials
4 publications, 1.17%
Journal of Physical Chemistry C
4 publications, 1.17%
Advanced Optical Materials
3 publications, 0.88%
Nanomaterials
3 publications, 0.88%
Nano Research
3 publications, 0.88%
International Journal of Heat and Mass Transfer
3 publications, 0.88%
Physical Chemistry Chemical Physics
3 publications, 0.88%
Proceedings of the National Academy of Sciences of the United States of America
3 publications, 0.88%
Journal of Physical Chemistry Letters
3 publications, 0.88%
Diamond and Related Materials
3 publications, 0.88%
Physical Review Materials
2 publications, 0.59%
Nature
2 publications, 0.59%
Nature Nanotechnology
2 publications, 0.59%
5
10
15
20
25
30

Publishers

10
20
30
40
50
60
70
80
American Chemical Society (ACS)
80 publications, 23.46%
Elsevier
61 publications, 17.89%
Wiley
60 publications, 17.6%
Springer Nature
39 publications, 11.44%
Royal Society of Chemistry (RSC)
23 publications, 6.74%
IOP Publishing
13 publications, 3.81%
AIP Publishing
12 publications, 3.52%
American Physical Society (APS)
12 publications, 3.52%
MDPI
10 publications, 2.93%
American Association for the Advancement of Science (AAAS)
4 publications, 1.17%
Oxford University Press
3 publications, 0.88%
Japan Society of Applied Physics
3 publications, 0.88%
Proceedings of the National Academy of Sciences (PNAS)
3 publications, 0.88%
Taylor & Francis
2 publications, 0.59%
Science in China Press
2 publications, 0.59%
Optica Publishing Group
2 publications, 0.59%
Tsinghua University Press
2 publications, 0.59%
Frontiers Media S.A.
1 publication, 0.29%
Pleiades Publishing
1 publication, 0.29%
Hindawi Limited
1 publication, 0.29%
Chinese Ceramic Society
1 publication, 0.29%
Institute of Electrical and Electronics Engineers (IEEE)
1 publication, 0.29%
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
1 publication, 0.29%
SPIE-Intl Soc Optical Eng
1 publication, 0.29%
The Surface Science Society of Japan
1 publication, 0.29%
10
20
30
40
50
60
70
80
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
342
Share
Cite this
GOST |
Cite this
GOST Copy
Xiang R. et al. One-dimensional van der Waals heterostructures // Science. 2020. Vol. 367. No. 6477. pp. 537-542.
GOST all authors (up to 50) Copy
Xiang R., Inoue T., Zheng Y., Kumamoto A., Yang Qian 杨. 倩., Sato Y., Liu M., Tang D., Gokhale D., Guo J., Hisama K., Yotsumoto S., Ogamoto T., Arai H., Kobayashi Yu., Zhang H., Hou B., Anisimov D. S., Maruyama M., Miyata Y., OKADA S., Chiashi S., Li Y., Kong J., Kauppinen E. I., Ikuhara Y., Suenaga K., Maruyama S. One-dimensional van der Waals heterostructures // Science. 2020. Vol. 367. No. 6477. pp. 537-542.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1126/science.aaz2570
UR - https://doi.org/10.1126/science.aaz2570
TI - One-dimensional van der Waals heterostructures
T2 - Science
AU - Xiang, Rong
AU - Inoue, T.
AU - Zheng, Yongjia
AU - Kumamoto, Akihito
AU - Yang Qian, 杨 倩
AU - Sato, Yuta
AU - Liu, Ming
AU - Tang, Daiming
AU - Gokhale, Devashish
AU - Guo, Jia
AU - Hisama, Kaoru
AU - Yotsumoto, Satoshi
AU - Ogamoto, Tatsuro
AU - Arai, Hayato
AU - Kobayashi, Yu
AU - Zhang, Hao
AU - Hou, Bo
AU - Anisimov, Daniil S.
AU - Maruyama, Mina
AU - Miyata, Yasumitsu
AU - OKADA, SUSUMU
AU - Chiashi, Shohei
AU - Li, Yan
AU - Kong, Jing
AU - Kauppinen, Esko I.
AU - Ikuhara, Yuichi
AU - Suenaga, Kazu
AU - Maruyama, Shigeo
PY - 2020
DA - 2020/01/31
PB - American Association for the Advancement of Science (AAAS)
SP - 537-542
IS - 6477
VL - 367
PMID - 32001649
SN - 0036-8075
SN - 1095-9203
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2020_Xiang,
author = {Rong Xiang and T. Inoue and Yongjia Zheng and Akihito Kumamoto and 杨 倩 Yang Qian and Yuta Sato and Ming Liu and Daiming Tang and Devashish Gokhale and Jia Guo and Kaoru Hisama and Satoshi Yotsumoto and Tatsuro Ogamoto and Hayato Arai and Yu Kobayashi and Hao Zhang and Bo Hou and Daniil S. Anisimov and Mina Maruyama and Yasumitsu Miyata and SUSUMU OKADA and Shohei Chiashi and Yan Li and Jing Kong and Esko I. Kauppinen and Yuichi Ikuhara and Kazu Suenaga and Shigeo Maruyama},
title = {One-dimensional van der Waals heterostructures},
journal = {Science},
year = {2020},
volume = {367},
publisher = {American Association for the Advancement of Science (AAAS)},
month = {jan},
url = {https://doi.org/10.1126/science.aaz2570},
number = {6477},
pages = {537--542},
doi = {10.1126/science.aaz2570}
}
MLA
Cite this
MLA Copy
Xiang, Rong, et al. “One-dimensional van der Waals heterostructures.” Science, vol. 367, no. 6477, Jan. 2020, pp. 537-542. https://doi.org/10.1126/science.aaz2570.