Open Access
Open access
volume 379 issue 6637 pages 1123-1130

Evolutionary-scale prediction of atomic-level protein structure with a language model

Zeming Lin 1, 2
Halil Akin 1
Roshan Rao 1
Brian Hie 1, 3
Zhongkai Zhu 1
Wenting Lu 1
Nikita Smetanin 1
Robert Verkuil 1
Ori Kabeli 1
Yaniv Shmueli 1
Allan dos Santos Costa 4
Maryam Fazel-Zarandi 1
Tom Sercu 1
S Candido 1
Alexander Rives 1, 2
Publication typeJournal Article
Publication date2023-03-17
scimago Q1
wos Q1
SJR10.416
CiteScore48.4
Impact factor45.8
ISSN00368075, 10959203
Multidisciplinary
Abstract

Recent advances in machine learning have leveraged evolutionary information in multiple sequence alignments to predict protein structure. We demonstrate direct inference of full atomic-level protein structure from primary sequence using a large language model. As language models of protein sequences are scaled up to 15 billion parameters, an atomic-resolution picture of protein structure emerges in the learned representations. This results in an order-of-magnitude acceleration of high-resolution structure prediction, which enables large-scale structural characterization of metagenomic proteins. We apply this capability to construct the ESM Metagenomic Atlas by predicting structures for >617 million metagenomic protein sequences, including >225 million that are predicted with high confidence, which gives a view into the vast breadth and diversity of natural proteins.

Found 
Found 

Top-30

Journals

20
40
60
80
100
120
Briefings in Bioinformatics
106 publications, 3.26%
Journal of Chemical Information and Modeling
100 publications, 3.08%
Bioinformatics
97 publications, 2.99%
Nature Communications
92 publications, 2.83%
bioRxiv
84 publications, 2.59%
Computational and Structural Biotechnology Journal
42 publications, 1.29%
Protein Science
39 publications, 1.2%
Current Opinion in Structural Biology
38 publications, 1.17%
PLoS Computational Biology
35 publications, 1.08%
Nucleic Acids Research
35 publications, 1.08%
Nature Machine Intelligence
34 publications, 1.05%
Proceedings of the National Academy of Sciences of the United States of America
34 publications, 1.05%
Proteins: Structure, Function and Genetics
31 publications, 0.95%
Scientific Reports
31 publications, 0.95%
Methods in Molecular Biology
31 publications, 0.95%
Nature Methods
30 publications, 0.92%
Lecture Notes in Computer Science
29 publications, 0.89%
International Journal of Molecular Sciences
28 publications, 0.86%
International Journal of Biological Macromolecules
26 publications, 0.8%
Cell Systems
24 publications, 0.74%
Journal of Molecular Biology
23 publications, 0.71%
Nature
22 publications, 0.68%
Computers in Biology and Medicine
19 publications, 0.58%
Science
18 publications, 0.55%
Advanced Science
18 publications, 0.55%
eLife
18 publications, 0.55%
Nature Biotechnology
16 publications, 0.49%
BMC Bioinformatics
15 publications, 0.46%
Communications Biology
15 publications, 0.46%
20
40
60
80
100
120

Publishers

100
200
300
400
500
600
700
800
900
Cold Spring Harbor Laboratory
889 publications, 27.37%
Springer Nature
516 publications, 15.89%
Elsevier
500 publications, 15.39%
Oxford University Press
291 publications, 8.96%
American Chemical Society (ACS)
187 publications, 5.76%
Wiley
172 publications, 5.3%
MDPI
105 publications, 3.23%
Institute of Electrical and Electronics Engineers (IEEE)
99 publications, 3.05%
Public Library of Science (PLoS)
51 publications, 1.57%
Frontiers Media S.A.
44 publications, 1.35%
Proceedings of the National Academy of Sciences (PNAS)
34 publications, 1.05%
American Association for the Advancement of Science (AAAS)
33 publications, 1.02%
Taylor & Francis
26 publications, 0.8%
Royal Society of Chemistry (RSC)
25 publications, 0.77%
eLife Sciences Publications
18 publications, 0.55%
Association for Computing Machinery (ACM)
17 publications, 0.52%
American Society for Microbiology
16 publications, 0.49%
International Union of Crystallography (IUCr)
14 publications, 0.43%
Annual Reviews
9 publications, 0.28%
American Physical Society (APS)
9 publications, 0.28%
AIP Publishing
7 publications, 0.22%
Research Square Platform LLC
7 publications, 0.22%
Science in China Press
7 publications, 0.22%
IOP Publishing
6 publications, 0.18%
Walter de Gruyter
5 publications, 0.15%
PeerJ
5 publications, 0.15%
Mary Ann Liebert
4 publications, 0.12%
SAGE
4 publications, 0.12%
The Royal Society
4 publications, 0.12%
100
200
300
400
500
600
700
800
900
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
3.2k
Share
Cite this
GOST |
Cite this
GOST Copy
Lin Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model // Science. 2023. Vol. 379. No. 6637. pp. 1123-1130.
GOST all authors (up to 50) Copy
Lin Z., Akin H., Rao R., Hie B., Zhu Z., Lu W., Smetanin N., Verkuil R., Kabeli O., Shmueli Y., dos Santos Costa A., Fazel-Zarandi M., Sercu T., Candido S., Rives A. Evolutionary-scale prediction of atomic-level protein structure with a language model // Science. 2023. Vol. 379. No. 6637. pp. 1123-1130.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1126/science.ade2574
UR - https://doi.org/10.1126/science.ade2574
TI - Evolutionary-scale prediction of atomic-level protein structure with a language model
T2 - Science
AU - Lin, Zeming
AU - Akin, Halil
AU - Rao, Roshan
AU - Hie, Brian
AU - Zhu, Zhongkai
AU - Lu, Wenting
AU - Smetanin, Nikita
AU - Verkuil, Robert
AU - Kabeli, Ori
AU - Shmueli, Yaniv
AU - dos Santos Costa, Allan
AU - Fazel-Zarandi, Maryam
AU - Sercu, Tom
AU - Candido, S
AU - Rives, Alexander
PY - 2023
DA - 2023/03/17
PB - American Association for the Advancement of Science (AAAS)
SP - 1123-1130
IS - 6637
VL - 379
PMID - 36927031
SN - 0036-8075
SN - 1095-9203
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Lin,
author = {Zeming Lin and Halil Akin and Roshan Rao and Brian Hie and Zhongkai Zhu and Wenting Lu and Nikita Smetanin and Robert Verkuil and Ori Kabeli and Yaniv Shmueli and Allan dos Santos Costa and Maryam Fazel-Zarandi and Tom Sercu and S Candido and Alexander Rives},
title = {Evolutionary-scale prediction of atomic-level protein structure with a language model},
journal = {Science},
year = {2023},
volume = {379},
publisher = {American Association for the Advancement of Science (AAAS)},
month = {mar},
url = {https://doi.org/10.1126/science.ade2574},
number = {6637},
pages = {1123--1130},
doi = {10.1126/science.ade2574}
}
MLA
Cite this
MLA Copy
Lin, Zeming, et al. “Evolutionary-scale prediction of atomic-level protein structure with a language model.” Science, vol. 379, no. 6637, Mar. 2023, pp. 1123-1130. https://doi.org/10.1126/science.ade2574.
Profiles