Molecular and Cellular Biology, volume 37, issue 13

Caloric Restriction Extends Yeast Chronological Life Span by Optimizing the Snf1 (AMPK) Signaling Pathway

Margaret B. Wierman 1
Nazif Maqani 1
Erika Strickler 1
Mingguang Li 1, 2
Jeffrey S Smith 1
Publication typeJournal Article
Publication date2017-07-19
scimago Q1
SJR1.452
CiteScore9.8
Impact factor3.2
ISSN02707306, 10985549
PubMed ID:  28373292
Molecular Biology
Cell Biology
Abstract
ABSTRACT AMP-activated protein kinase (AMPK) and the homologous yeast SNF1 complex are key regulators of energy metabolism that counteract nutrient deficiency and ATP depletion by phosphorylating multiple enzymes and transcription factors that maintain energetic homeostasis. AMPK/SNF1 also promotes longevity in several model organisms, including yeast. Here we investigate the role of yeast SNF1 in mediating the extension of chronological life span (CLS) by caloric restriction (CR). We find that SNF1 activity is required throughout the transition of log phase to stationary phase (diauxic shift) for effective CLS extension. CR expands the period of maximal SNF1 activation beyond the diauxic shift, as indicated by Sak1-dependent T210 phosphorylation of the Snf1 catalytic α-subunit. A concomitant increase in ADP is consistent with SNF1 activation by ADP in vivo. Downstream of SNF1, the Cat8 and Adr1 transcription factors are required for full CR-induced CLS extension, implicating an alternative carbon source utilization for acetyl coenzyme A (acetyl-CoA) production and gluconeogenesis. Indeed, CR increased acetyl-CoA levels during the diauxic shift, along with expression of both acetyl-CoA synthetase genes ACS1 and ACS2. We conclude that CR maximizes Snf1 activity throughout and beyond the diauxic shift, thus optimizing the coordination of nucleocytosolic acetyl-CoA production with massive reorganization of the transcriptome and respiratory metabolism.
Hadj-Moussa H., Ulusan M., Horkai D., Mirza M.K., Houseley J.
2025-03-27 citations by CoLab: 0 Abstract  
AbstractAlthough lifespan has long been the focus of ageing research, the need to enhance healthspan - the fraction of life spent in good health - is a more pressing societal need. Caloric restriction improves healthspan across eukaryotes but is unrealistic as a societal intervention. Here, we describe the rewiring of a highly conserved nutrient sensing system to prevent senescence onset and declining fitness in budding yeast even when aged on an unrestricted high glucose diet. We show that AMPK activation can prevent the onset of senescence by activating two pathways that remove excess acetyl coenzyme A from the cytoplasm into the mitochondria - the glyoxylate cycle and the carnitine shuttle. However, AMPK represses fatty acid synthesis from acetyl coenzyme A, which is critical for normal cellular function and growth. AMPK activation therefore has positive and negative effects during ageing. Combining AMPK activation with a point mutation in fatty acid synthesis enzyme Acc1 that prevents inhibition by AMPK (the A2A mutant) allows cells to maintain fitness late in life without reducing the mortality associated with advanced age. Our research shows that ageing in yeast is not intrinsically associated with loss of fitness, and that metabolic re-engineering allows high fitness to be preserved to the end of life.
Li Q., Xiao N., Zhang H., Liang G., Lin Y., Qian Z., Yang X., Yang J., Fu Y., Zhang C., Liu A.
FASEB Journal scimago Q1 wos Q2
2025-03-11 citations by CoLab: 0 Abstract  
AbstractAging is a biological process along with systemic and multiple organ dysfunction. It is more and more recognized that aging is a systemic disease instead of a single‐organ functional disorder. Systemic aging plays a profound role in multiple diseases including neurodegenerative diseases, cardiovascular diseases, and malignant diseases. Aged organs communicate with other organs and accelerate aging. Skeletal muscle, heart, bone marrow, skin, and liver communicate with each other through organ–organ crosstalk. The crosstalk can be mediated by metabolites including lipids, glucose, short‐chain fatty acids (SCFA), inflammatory cytokines, and exosomes. Metabolic disorders including hyperglycemia, hyperinsulinemia, and hypercholesterolemia caused by chronic diseases accelerate hallmarks of aging. Systemic aging leads to the destruction of systemic hemostasis, causes the release of inflammatory cytokines, senescence‐associated secretory phenotype (SASP), and the imbalance of microbiota composition. Released inflammatory factors further aggregate senescence, which promotes the aging of multiple solid organs. Targeting senescence or delaying aging is emerging as a critical health strategy for solving age‐related diseases, especially in the old population. In the current review, we will delineate the mechanisms of organ crosstalk in systemic aging and age‐related diseases to provide therapeutic targets for delaying aging.
Pusev M.S., Klein O.I., Gessler N.N., Bachurina G.P., Filippovich S.Y., Isakova E.P., Deryabina Y.I.
2024-11-22 citations by CoLab: 0 PDF Abstract  
Polyphenols are powerful natural antioxidants with numerous biological activities. They change cell membrane permeability, interact with receptors, intracellular enzymes, and cell membrane transporters, and quench reactive oxygen species (ROS). Yarrowia lipolytica yeast, being similar to mammalian cells, can be used as a model to study their survival ability upon long-lasting cultivation, assaying the effect of dihydroquercetin polyphenol (DHQ). The complex assessment of the physiological features of the population assaying cell respiration, survival, ROS detection, and flow cytometry was used. Y. lipolytica showed signs of chronological aging by eight weeks of growth, namely a decrease in the cell number, and size, increased ROS generation, a decrease in colony-forming unit (CFU) and metabolic activity, and decreased respiratory rate and membrane potential. An amount of 150 µM DHQ decreased ROS generation at the 6-week growth stage upon adding an oxidant of 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH). Moreover, it decreased CFU at 1–4 weeks of cultivation, inhibited cell metabolic activity of the 24-h-old culture and stimulated that on 14–56 days of growth, induced the cell respiration rate in the 24-h-old culture, and blocked alternative mitochondrial oxidase at growth late stages. DHQ serves as a mild pro-oxidant on the first day of age-stimulating anti-stress protection. In the deep stationary stage, it can act as a powerful antioxidant, stabilizing cell redox status and reducing free radical oxidation in mitochondria. It provides a stable state of population. The hormetic effects of DHQ using lower eukaryotes of Y. lipolytica have been previously discussed, which can be used as a model organism for screening geroprotective compounds of natural origin.
Lucca C., Ferrari E., Shubassi G., Ajazi A., Choudhary R., Bruhn C., Matafora V., Bachi A., Foiani M.
Cell Reports scimago Q1 wos Q1 Open Access
2024-06-01 citations by CoLab: 0 Abstract  
Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1
Horvath A., Janapala Y., Woodward K., Mahmud S., Cleynen A., Gardiner E., Hannan R., Eyras E., Preiss T., Shirokikh N.
Nucleic Acids Research scimago Q1 wos Q1 Open Access
2024-05-09 citations by CoLab: 3 PDF Abstract  
Abstract Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.
Rawat S.S., Laxmi A.
Frontiers in Plant Science scimago Q1 wos Q1 Open Access
2024-03-18 citations by CoLab: 4 PDF Abstract  
Cell cycle involves the sequential and reiterative progression of important events leading to cell division. Progression through a specific phase of the cell cycle is under the control of various factors. Since the cell cycle in multicellular eukaryotes responds to multiple extracellular mitogenic cues, its study in higher forms of life becomes all the more important. One such factor regulating cell cycle progression in plants is sugar signalling. Because the growth of organs depends on both cell growth and proliferation, sugars sensing and signalling are key control points linking sugar perception to regulation of downstream factors which facilitate these key developmental transitions. However, the basis of cell cycle control via sugars is intricate and demands exploration. This review deals with the information on sugar and TOR-SnRK1 signalling and how they manoeuvre various events of the cell cycle to ensure proper growth and development.
Zhang Y., Naaz A., Faidzinn N.A., Yogasundaram S., Cheng T.Y., Jing J.L., Morel Gan I.W., Junqi C., Alfatah M.
2023-08-16 citations by CoLab: 0 Abstract  
AbstractThe quest to understand and manipulate the mechanisms of cellular aging has far-reaching implications for improving human health and longevity. Our comprehensive effort has led to the discovery of the intriguing anti-aging potential of hemin, an FDA-approved drug primarily used for the treatment of acute intermittent porphyria. Leveraging both yeast and human cell models, we investigate the multifaceted effects of hemin on extending cellular lifespan. Intriguingly, the involvement of the AMPK pathway emerges as a pivotal mechanism underlying hemin’s anti-aging effects. The exploration of hemin’s impact on cellular functionality further uncovers its influence on mitochondrial processes. Notably, both mitochondrial-dependent and -independent mechanisms are implicated in hemin’s ability to extend cellular lifespan, with autophagy playing a significant role in the latter. Additionally, a striking synergy between hemin and the TORC1 inhibitor rapamycin is unveiled, underlining the complexity of cellular signaling networks involved in lifespan extension. Translating these findings to human cells, hemin demonstrates an analogous ability to induce mitochondrial biogenesis, reduce proinflammatory cytokine expression, and enhance antioxidant response. The conservation of hemin’s anti-aging effects across species holds promise for therapeutic applications in addressing age-related diseases and promoting healthier aging.
Wagner E.R., Gasch A.P.
Journal of Fungi scimago Q1 wos Q1 Open Access
2023-07-26 citations by CoLab: 3 PDF Abstract  
Genetically engineering microorganisms to produce chemicals has changed the industrialized world. The budding yeast Saccharomyces cerevisiae is frequently used in industry due to its genetic tractability and unique metabolic capabilities. S. cerevisiae has been engineered to produce novel compounds from diverse sugars found in lignocellulosic biomass, including pentose sugars, like xylose, not recognized by the organism. Engineering high flux toward novel compounds has proved to be more challenging than anticipated since simply introducing pathway components is often not enough. Several studies show that the rewiring of upstream signaling is required to direct products toward pathways of interest, but doing so can diminish stress tolerance, which is important in industrial conditions. As an example of these challenges, we reviewed S. cerevisiae engineering efforts, enabling anaerobic xylose fermentation as a model system and showcasing the regulatory interplay’s controlling growth, metabolism, and stress defense. Enabling xylose fermentation in S. cerevisiae requires the introduction of several key metabolic enzymes but also regulatory rewiring of three signaling pathways at the intersection of the growth and stress defense responses: the RAS/PKA, Snf1, and high osmolarity glycerol (HOG) pathways. The current studies reviewed here suggest the modulation of global signaling pathways should be adopted into biorefinery microbial engineering pipelines to increase efficient product yields.
Li K., Wang C., Wang Y., Fu L., Zhang N.
Journal of Future Foods scimago Q1 wos Q1 Open Access
2023-06-01 citations by CoLab: 6 Abstract  
Ageing is a universal decline of physiological functions accompanied by an increase in risks of developing morbidity, diseases, and death. Calorie restriction (CR) without malnutrition has been shown to improve lifespan from simple model organisms to mammals, and extensive research over the past decades have identified several universally conserved signalling pathways by which CR regulates lifespan. More recently, emerging evidence has suggested that modulation of intake levels of macronutrients and micronutrients can also impact healthspan and lifespan in model organisms. These findings propose potentially promising and cost-effective approaches to promote healthy ageing and longevity in humans through personalised nutrition. In this review, we summarise the mechanisms by which CR promotes healthspan and longevity, focusing on the mitochondrial reactive oxygen species (ROS) and several universally conserved geroprotective nutrient-sensing pathways (insulin/insulin-like growth factor (IGF-1), AMP-activated protein kinase (AMPK), mTOR). We further discuss the accumulating data supporting that changes in dietary pattern, levels of nutrient intake (both macronutrient and micronutrient) and functional foods can impact healthspan through acting on the key components of nutrient-sensing and immunoprotective pathways, providing fundamental support for future research and development of anti-ageing diets and dietary regimes.
Ghaddar A., Mony V.K., Mishra S., Berhanu S., Johnson J.C., Enriquez-Hesles E., Harrison E., Patel A., Horak M.K., Smith J.S., O’Rourke E.J.
Current Biology scimago Q1 wos Q1
2023-03-01 citations by CoLab: 7 Abstract  
Several molecules can extend healthspan and lifespan across organisms. However, most are upstream signaling hubs or transcription factors orchestrating complex anti-aging programs. Therefore, these molecules point to but do not reveal the fundamental mechanisms driving longevity. Instead, downstream effectors that are necessary and sufficient to promote longevity across conditions or organisms may reveal the fundamental anti-aging drivers. Toward this goal, we searched for effectors acting downstream of the transcription factor EB (TFEB), known as HLH-30 in C. elegans, because TFEB/HLH-30 is necessary across anti-aging interventions and its overexpression is sufficient to extend C. elegans lifespan and reduce biomarkers of aging in mammals including humans. As a result, we present an alcohol-dehydrogenase-mediated anti-aging response (AMAR) that is essential for C. elegans longevity driven by HLH-30 overexpression, caloric restriction, mTOR inhibition, and insulin-signaling deficiency. The sole overexpression of ADH-1 is sufficient to activate AMAR, which extends healthspan and lifespan by reducing the levels of glycerol-an age-associated and aging-promoting alcohol. Adh1 overexpression is also sufficient to promote longevity in yeast, and adh-1 orthologs are induced in calorically restricted mice and humans, hinting at ADH-1 acting as an anti-aging effector across phyla.
Caligaris M., Nicastro R., Hu Z., Tripodi F., Hummel J.E., Pillet B., Deprez M., Winderickx J., Rospert S., Coccetti P., Dengjel J., De Virgilio C.
eLife scimago Q1 wos Q1 Open Access
2023-02-07 citations by CoLab: 26 Abstract  
The AMP-activated protein kinase (AMPK) and the target of rapamycin complex 1 (TORC1) are central kinase modules of two opposing signaling pathways that control eukaryotic cell growth and metabolism in response to the availability of energy and nutrients. Accordingly, energy depletion activates AMPK to inhibit growth, while nutrients and high energy levels activate TORC1 to promote growth. Both in mammals and lower eukaryotes such as yeast, the AMPK and TORC1 pathways are wired to each other at different levels, which ensures homeostatic control of growth and metabolism. In this context, a previous study (Hughes Hallet et. al, 2015) reported that AMPK in yeast, i.e. Snf1, prevents the transient TORC1 reactivation during the early phase following acute glucose starvation, but the underlying mechanism has remained elusive. Using a combination of unbiased mass spectrometry (MS)-based phosphoproteomics, genetic, biochemical, and physiological experiments, we show here that Snf1 temporally maintains TORC1 inactive in glucose-starved cells primarily through the TORC1-regulatory protein Pib2. Our data, therefore, extend the function of Pib2 to a hub that integrates both glucose and, as reported earlier, glutamine signals to control TORC1. We further demonstrate that Snf1 phosphorylates the TORC1 effector kinase Sch9 within its N-terminal region and thereby antagonizes the phosphorylation of a C-terminal TORC1-target residue within Sch9 itself that is critical for its activity. The consequences of Snf1-mediated phosphorylation of Pib2 and Sch9 are physiologically additive and sufficient to explain the role of Snf1 in short-term inhibition of TORC1 in acutely glucose-starved cells.
Bari K.A., Berg M.D., Genereaux J., Brandl C.J., Lajoie P.
G3: Genes, Genomes, Genetics scimago Q1 wos Q3 Open Access
2022-10-31 citations by CoLab: 3 PDF Abstract  
Abstract Gene expression undergoes considerable changes during the aging process. The mechanisms regulating the transcriptional response to cellular aging remain poorly understood. Here, we employ the budding yeast Saccharomyces cerevisiae to better understand how organisms adapt their transcriptome to promote longevity. Chronological lifespan assays in yeast measure the survival of nondividing cells at stationary phase over time, providing insights into the aging process of postmitotic cells. Tra1 is an essential component of both the yeast Spt-Ada-Gcn5 acetyltransferase/Spt-Ada-Gcn5 acetyltransferase-like and nucleosome acetyltransferase of H4 complexes, where it recruits these complexes to acetylate histones at targeted promoters. Importantly, Tra1 regulates the transcriptional response to multiple stresses. To evaluate the role of Tra1 in chronological aging, we took advantage of a previously characterized mutant allele that carries mutations in the TRA1 PI3K domain (tra1Q3). We found that loss of functions associated with tra1Q3 sensitizes cells to growth media acidification and shortens lifespan. Transcriptional profiling reveals that genes differentially regulated by Tra1 during the aging process are enriched for components of the response to stress. Notably, expression of catalases (CTA1, CTT1) involved in hydrogen peroxide detoxification decreases in chronologically aged tra1Q3 cells. Consequently, they display increased sensitivity to oxidative stress. tra1Q3 cells are unable to grow on glycerol indicating a defect in mitochondria function. Aged tra1Q3 cells also display reduced expression of peroxisomal genes, exhibit decreased numbers of peroxisomes, and cannot grow on media containing oleate. Thus, Tra1 emerges as an important regulator of longevity in yeast via multiple mechanisms.
Caligaris M., Nicastro R., Hu Z., Tripodi F., Hummel J.E., Deprez M., Winderickx J., Rospert S., Coccetti P., Dengjel J., De Virgilio C.
2022-10-18 citations by CoLab: 0 Abstract  
AbstractThe AMP-activated protein kinase (AMPK) and the target of rapamycin complex 1 (TORC1) are central kinase modules of two opposing signaling pathways that control eukaryotic cell growth and metabolism in response to the availability of energy and nutrients. Accordingly, energy depletion activates AMPK to inhibit growth, while nutrients and high energy levels activate TORC1 to promote growth. Both in mammals and lower eukaryotes such as yeast, the AMPK and TORC1 pathways are wired to each other at different levels, which ensures homeostatic control of growth and metabolism. In this context, a previous study (Hughes Hallet et. al, 2015) reported that AMPK in yeast,i.e. Snf1, plays a role in short-term downregulation of TORC1 activity upon acute glucose starvation, but the underlying mechanism has remained elusive. Using a combination of unbiased mass spectrometry (MS)-based phosphoproteomics, genetic, biochemical, and physiological experiments, we show here that Snf1 contributes to glucose starvation-induced short-term TORC1 inactivation primarily through the TORC1-regulatory protein Pib2. Our data, therefore, extend the function of Pib2 to a hub that integrates both glucose and, as reported earlier, glutamine signals to control TORC1. We further demonstrate that Snf1 phosphorylates the TORC1 effector kinase Sch9 within its N-terminal region and thereby antagonizes the phosphorylation of a C-terminal TORC1-target residue within Sch9 itself that is critical for its activity. The consequences of Snf1-mediated phosphorylation of Pib2 and Sch9 are physiologically additive and sufficient to explain the role of Snf1 in short-term inhibition of TORC1 in acutely glucose-starved cells.
Wang Z., Cui Y., Wen L., Yu H., Feng J., Yuan W., He X.
Nutrients scimago Q1 wos Q1 Open Access
2022-10-03 citations by CoLab: 1 PDF Abstract  
Dietary restriction (DR) is defined as a moderate reduction in food intake while avoiding malnutrition. The beneficial effects of DR are being increasingly acknowledged in aging and in a series of age-related neurodegenerative disorders, for example, Parkinson’s disease (PD). To date, the pathogenesis of PD remains elusive and there is no cure for it in spite of intensive research over decades. In this review, we summarize the current knowledge on the efficacy of DR on PD, focusing on the underlying mechanisms involving general metabolism, neuroendocrinolgy, neuroinflammation, gut microbiome, and so on. We anticipate that this review will provide future perspectives for PD prevention and treatment.

Top-30

Journals

1
2
3
1
2
3

Publishers

1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?