Geology, volume 50, issue 7, pages 812-816

Seismic anisotropy in the central Tien Shan unveils rheology-controlled deformation during intracontinental orogenesis

Publication typeJournal Article
Publication date2022-04-14
Journal: Geology
scimago Q1
SJR2.330
CiteScore10.0
Impact factor4.8
ISSN00917613, 19432682
Geology
Abstract

The initiation and evolution of compressional intracontinental orogens are favored by rheologically weak lithosphere underneath; however, how this weakened lithosphere responds to the regional stress regime remains vigorously debated. The Tien Shan mountains in central Asia provide the best example to illustrate the deep deformational responses to intracontinental orogenesis. We present new constraints on the nature of seismic anisotropy in the crust and upper mantle of the central Tien Shan through shear-wave splitting analyses. Our results reveal a sharp change in the orientations of crustal anisotropic fabrics on two sides of the mountains. The convergence-parallel fast orientations in the northern segment are closely related to the lower-crustal simple-shear deformation caused by the underthrusting of the Kazakh Shield, whereas the depth-independent orogen-parallel fast orientations in the southern segment suggest vertically coherent pure-shear thickening of the Tien Shan lithosphere in response to the northward indentation of the Tarim Basin. The thickened lithosphere has partly foundered into the deep mantle, contributing to the accelerated shortening deformation in the late Cenozoic. Our observations demonstrate the complex tectonic processes in the Tien Shan and suggest that the rheological properties of bounding blocks can play a significant role in shaping the lithospheric structures of intracontinental orogens.

Found 

Top-30

Journals

1
1

Publishers

1
2
3
4
5
6
1
2
3
4
5
6
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?