Journal of Surface Investigation, volume 18, issue 2, pages 361-371

Structure and Properties of High-Speed Steel Surfaised Layer Irradiated by Pulsed Electron Beam

Publication typeJournal Article
Publication date2024-04-01
scimago Q4
SJR0.179
CiteScore0.9
Impact factor0.5
ISSN10274510, 18197094
Abstract
The methods of light, scanning, and transmission electron microscopy are used to study the structure, phase composition, and properties of multilayer plasma surfacings made of high-speed steel R18YU in a protective-alloying nitrogen medium, followed by a fourfold high-temperature tempering and additional electron beam processing. After tempering, the deposited layer on the 30KHGSA high-speed steel R18YU has a polycrystalline structure with a cell size of 7–22.5 µm with layers of the second phase along the boundaries and at the joints of the grains. It is shown that the irradiation of surfaised layers with a pulsed electron beam (energy density 30 J/cm2, pulse duration 50 µs, number of pulses 5, and pulse repetition rate 0.3 s–1) leads to the formation of a thin (30–50 µm) surface layer with a cellular crystallization structure. The volume of grains is formed by a solid solution based on α-Fe. Nanoscale (10–45 nm) particles of iron, chromium, and tungsten carbides of complex composition, such as M6C and M23C6, are located in the volume and along the boundaries of the crystallization cells. Fragmentation of the surface layer by a grid of microcracks is revealed, indicating relaxation of thermal stresses formed during high-speed cooling after electron beam processing. The particles have a faceted or globular shape. After irradiation with an electron beam, the wear resistance of the material increases by more than 3 times, while maintaining the microhardness of the modified layer (~5.3 GPa).
Found 
Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?