том 514 издание 1 страницы 9-14

Prediction of Mechanical Properties of High-Entropy Carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with the Use of Machine Learning Potential

Тип публикацииJournal Article
Дата публикации2024-01-01
scimago Q4
wos Q4
БС4
SJR0.195
CiteScore1.7
Impact factor1.5
ISSN00125016, 16083121
Краткое описание
The six-component high-entropy carbide (HEC) (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C has been studied. The electronic structure was calculated using the ab initio VASP package for a 512-atom supercell constructed with the use of special quasi-random structures. The artificial neural network potential (ANN potential) was obtained by deep machine learning. The quality of the ANN potential was estimated by standard deviations of energies, forces, and virials. The generated ANN potential was used in the LAMMPS classical molecular dynamics software to analyze both the defect-free model of the alloy comprising 4096 atoms and, for the first time, the model of the polycrystalline HEC composed of 4603 atoms. Simulation of uniaxial cell tension was carried out, and elastic coefficients, bulk modulus, elastic modulus, and Poisson’s ratio were determined. The obtained values are in good agreement with experimental and calculated data, which indicates a good predictive ability of the generated ANN potential.
Найдено 
Найдено 

Топ-30

Журналы

1
2
Ceramics International
2 публикации, 28.57%
High Entropy Alloys & Materials
1 публикация, 14.29%
Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
1 публикация, 14.29%
Russian Chemical Reviews
1 публикация, 14.29%
Physical Chemistry Chemical Physics
1 публикация, 14.29%
Journal of Chemical Information and Modeling
1 публикация, 14.29%
1
2

Издатели

1
2
Elsevier
2 публикации, 28.57%
Springer Nature
1 публикация, 14.29%
American Vacuum Society
1 публикация, 14.29%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 публикация, 14.29%
Royal Society of Chemistry (RSC)
1 публикация, 14.29%
American Chemical Society (ACS)
1 публикация, 14.29%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
7
Поделиться
Цитировать
ГОСТ |
Цитировать
Pikalova N. S. et al. Prediction of Mechanical Properties of High-Entropy Carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with the Use of Machine Learning Potential // Doklady Physical Chemistry. 2024. Vol. 514. No. 1. pp. 9-14.
ГОСТ со всеми авторами (до 50) Скопировать
Pikalova N. S., Balyakin I. A., Yuryev A. A., Rempel' A. A. Prediction of Mechanical Properties of High-Entropy Carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with the Use of Machine Learning Potential // Doklady Physical Chemistry. 2024. Vol. 514. No. 1. pp. 9-14.
RIS |
Цитировать
TY - JOUR
DO - 10.1134/s0012501624600049
UR - https://link.springer.com/10.1134/S0012501624600049
TI - Prediction of Mechanical Properties of High-Entropy Carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with the Use of Machine Learning Potential
T2 - Doklady Physical Chemistry
AU - Pikalova, N S
AU - Balyakin, I A
AU - Yuryev, A A
AU - Rempel', A A
PY - 2024
DA - 2024/01/01
PB - Pleiades Publishing
SP - 9-14
IS - 1
VL - 514
SN - 0012-5016
SN - 1608-3121
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Pikalova,
author = {N S Pikalova and I A Balyakin and A A Yuryev and A A Rempel'},
title = {Prediction of Mechanical Properties of High-Entropy Carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with the Use of Machine Learning Potential},
journal = {Doklady Physical Chemistry},
year = {2024},
volume = {514},
publisher = {Pleiades Publishing},
month = {jan},
url = {https://link.springer.com/10.1134/S0012501624600049},
number = {1},
pages = {9--14},
doi = {10.1134/s0012501624600049}
}
MLA
Цитировать
Pikalova, N. S., et al. “Prediction of Mechanical Properties of High-Entropy Carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with the Use of Machine Learning Potential.” Doklady Physical Chemistry, vol. 514, no. 1, Jan. 2024, pp. 9-14. https://link.springer.com/10.1134/S0012501624600049.