Journal of the Society for Industrial and Applied Mathematics, volume 8, issue 1, pages 181-217

The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints

Publication typeJournal Article
Publication date2005-02-23
SJR
CiteScore
Impact factor
ISSN03684245, 21683484
General Medicine
Abstract
more constraints or equations, with either a linear or nonlinear objective function. This distinction is made primarily on the basis of the difficulty of solving these two types of nonlinear problems. The first type is the less difficult of the two, and in this, Part I of the paper, it is shown how it is solved by the gradient projection method. It should be noted that since a linear objective function is a special case of a nonlinear objective function, the gradient projection method will also solve a linear programming problem. In Part II of the paper [16], the extension of the gradient projection method to the more difficult problem of nonlinear constraints and equations will be described. The basic paper on linear programming is the paper by Dantzig [5] in which the simplex method for solving the linear programming problem is presented. The nonlinear programming problem is formulated and a necessary and sufficient condition for a constrained maximum is given in terms of an equivalent saddle value problem in the paper by Kuhn and Tucker [10]. Further developments motivated by this paper, including a computational procedure, have been published recently [1]. The gradient projection method was originally presented to the American Mathematical Society
Found 

Top-30

Journals

2
4
6
8
10
12
14
16
2
4
6
8
10
12
14
16

Publishers

20
40
60
80
100
120
140
160
180
20
40
60
80
100
120
140
160
180
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?