том 54 издание 10s страницы 1-29

A Systematic Review on Data Scarcity Problem in Deep Learning: Solution and Applications

Тип публикацииJournal Article
Дата публикации2022-01-06
scimago Q1
wos Q1
БС1
SJR5.797
CiteScore51.6
Impact factor28.0
ISSN03600300, 15577341
Theoretical Computer Science
General Computer Science
Краткое описание

Recent advancements in deep learning architecture have increased its utility in real-life applications. Deep learning models require a large amount of data to train the model. In many application domains, there is a limited set of data available for training neural networks as collecting new data is either not feasible or requires more resources such as in marketing, computer vision, and medical science. These models require a large amount of data to avoid the problem of overfitting. One of the data space solutions to the problem of limited data is data augmentation. The purpose of this study focuses on various data augmentation techniques that can be used to further improve the accuracy of a neural network. This saves the cost and time consumption required to collect new data for the training of deep neural networks by augmenting available data. This also regularizes the model and improves its capability of generalization. The need for large datasets in different fields such as computer vision, natural language processing, security, and healthcare is also covered in this survey paper. The goal of this paper is to provide a comprehensive survey of recent advancements in data augmentation techniques and their application in various domains.

Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
9
Applied Sciences (Switzerland)
9 публикаций, 4.79%
IEEE Access
5 публикаций, 2.66%
Lecture Notes in Computer Science
5 публикаций, 2.66%
IEEE Journal of Biomedical and Health Informatics
3 публикации, 1.6%
Biomedical Signal Processing and Control
3 публикации, 1.6%
Nature Machine Intelligence
2 публикации, 1.06%
Computer Methods and Programs in Biomedicine
2 публикации, 1.06%
Engineering Applications of Artificial Intelligence
2 публикации, 1.06%
Information Fusion
2 публикации, 1.06%
Expert Systems with Applications
2 публикации, 1.06%
ACM Transactions on Recommender Systems
2 публикации, 1.06%
Artificial Intelligence Review
2 публикации, 1.06%
Computers in Biology and Medicine
2 публикации, 1.06%
Pattern Recognition
2 публикации, 1.06%
Computerized Medical Imaging and Graphics
2 публикации, 1.06%
ACM Computing Surveys
2 публикации, 1.06%
Scientific Reports
2 публикации, 1.06%
Advanced Engineering Informatics
2 публикации, 1.06%
Lecture Notes in Networks and Systems
2 публикации, 1.06%
Communications in Computer and Information Science
2 публикации, 1.06%
Frontiers in Artificial Intelligence
2 публикации, 1.06%
Applied Soft Computing Journal
2 публикации, 1.06%
New Media and Society
1 публикация, 0.53%
Frontiers in Big Data
1 публикация, 0.53%
Technological Forecasting and Social Change
1 публикация, 0.53%
Professional Geographer
1 публикация, 0.53%
Journal of King Saud University - Computer and Information Sciences
1 публикация, 0.53%
Computers and Industrial Engineering
1 публикация, 0.53%
Ecological Informatics
1 публикация, 0.53%
1
2
3
4
5
6
7
8
9

Издатели

10
20
30
40
50
60
Elsevier
56 публикаций, 29.79%
Institute of Electrical and Electronics Engineers (IEEE)
37 публикаций, 19.68%
Springer Nature
28 публикаций, 14.89%
MDPI
18 публикаций, 9.57%
Association for Computing Machinery (ACM)
8 публикаций, 4.26%
SAGE
7 публикаций, 3.72%
Frontiers Media S.A.
4 публикации, 2.13%
Cold Spring Harbor Laboratory
4 публикации, 2.13%
Oxford University Press
4 публикации, 2.13%
Wiley
4 публикации, 2.13%
Taylor & Francis
3 публикации, 1.6%
IGI Global
3 публикации, 1.6%
Royal Society of Chemistry (RSC)
2 публикации, 1.06%
Ovid Technologies (Wolters Kluwer Health)
2 публикации, 1.06%
King Saud University
1 публикация, 0.53%
ASME International
1 публикация, 0.53%
IOP Publishing
1 публикация, 0.53%
Cambridge University Press
1 публикация, 0.53%
Public Library of Science (PLoS)
1 публикация, 0.53%
American Chemical Society (ACS)
1 публикация, 0.53%
World Scientific
1 публикация, 0.53%
Tuberculosis Association of India
1 публикация, 0.53%
10
20
30
40
50
60
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
188
Поделиться
Цитировать
ГОСТ |
Цитировать
Bansal M. A., Sharma D. R., Kathuria D. M. A Systematic Review on Data Scarcity Problem in Deep Learning: Solution and Applications // ACM Computing Surveys. 2022. Vol. 54. No. 10s. pp. 1-29.
ГОСТ со всеми авторами (до 50) Скопировать
Bansal M. A., Sharma D. R., Kathuria D. M. A Systematic Review on Data Scarcity Problem in Deep Learning: Solution and Applications // ACM Computing Surveys. 2022. Vol. 54. No. 10s. pp. 1-29.
RIS |
Цитировать
TY - JOUR
DO - 10.1145/3502287
UR - https://doi.org/10.1145/3502287
TI - A Systematic Review on Data Scarcity Problem in Deep Learning: Solution and Applications
T2 - ACM Computing Surveys
AU - Bansal, Ms. Aayushi
AU - Sharma, Dr. Rewa
AU - Kathuria, Dr. Mamta
PY - 2022
DA - 2022/01/06
PB - Association for Computing Machinery (ACM)
SP - 1-29
IS - 10s
VL - 54
SN - 0360-0300
SN - 1557-7341
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Bansal,
author = {Ms. Aayushi Bansal and Dr. Rewa Sharma and Dr. Mamta Kathuria},
title = {A Systematic Review on Data Scarcity Problem in Deep Learning: Solution and Applications},
journal = {ACM Computing Surveys},
year = {2022},
volume = {54},
publisher = {Association for Computing Machinery (ACM)},
month = {jan},
url = {https://doi.org/10.1145/3502287},
number = {10s},
pages = {1--29},
doi = {10.1145/3502287}
}
MLA
Цитировать
Bansal, Ms. Aayushi, et al. “A Systematic Review on Data Scarcity Problem in Deep Learning: Solution and Applications.” ACM Computing Surveys, vol. 54, no. 10s, Jan. 2022, pp. 1-29. https://doi.org/10.1145/3502287.