volume 77 issue 6 pages 000370282311702

Adversarial Data Augmentation and Transfer Net for Scrap Metal Identification Using Laser-Induced Breakdown Spectroscopy Measurement of Standard Reference Materials

Publication typeJournal Article
Publication date2023-04-25
scimago Q2
wos Q2
SJR0.456
CiteScore4.9
Impact factor2.2
ISSN00037028, 19433530
Spectroscopy
Instrumentation
Abstract

In this study, we propose a transfer learning-based classification model for identifying scrap metal using an augmented training dataset consisting of laser-induced breakdown spectroscopy (LIBS) measurement of standard reference material (SRMs) samples, considering varying experimental setups and environmental conditions. LIBS provides unique spectra for identifying unknown samples without complicated sample preparation. Thus, LIBS systems combined with machine learning methods have been actively studied for industrial applications such as scrap metal recycling. However, in machine learning models, a training set of the used samples may not cover the diversity of the scrap metal encountered in field measurements. Moreover, differences in experimental configuration, where laboratory standards and real samples are analyzed in situ, may lead to a wider gap in the distribution of training and test sets, dramatically reducing the performance of the LIBS-based fast classification system for real samples. To address these challenges, we propose a two-step Aug2Tran model. First, we augment the SRM dataset by synthesizing spectra of unobserved types through attenuation of dominant peaks corresponding to sample composition and generating spectra depending on the target sample using a generative adversarial network. Second, we used the augmented SRM dataset to build a robust real-time classification model with a convolutional neural network, which is further customized for the target scrap metal with limited measurements through transfer learning. For evaluation, SRMs of five representative metal types, including aluminum, copper, iron, stainless steel, and brass, are measured with a typical setup to form the SRM dataset. For testing, scrap metal from actual industrial fields is experimented with three different configurations, resulting in eight different test datasets. The experimental results show that the proposed scheme produces an average classification accuracy of 98.25% for the three experimental conditions, as high as the results of the conventional scheme with three separately trained and executed models. Additionally, the proposed model improves the classification accuracy of arbitrarily shaped static or moving samples with various surface contaminations and compositions, and even for differing ranges of charted intensities and wavelengths. Therefore, the proposed Aug2Tran model can be used as a systematic model for scrap metal classification with generalizability and ease of implementation.

Found 
Found 

Top-30

Journals

1
Scientific data
1 publication, 14.29%
Journal of Laser Applications
1 publication, 14.29%
IEEE Transactions on Instrumentation and Measurement
1 publication, 14.29%
Microchemical Journal
1 publication, 14.29%
E-Management
1 publication, 14.29%
Nondestructive Testing and Evaluation
1 publication, 14.29%
1

Publishers

1
Springer Nature
1 publication, 14.29%
Laser Institute of America
1 publication, 14.29%
Institute of Electrical and Electronics Engineers (IEEE)
1 publication, 14.29%
Elsevier
1 publication, 14.29%
State University of Management
1 publication, 14.29%
Taylor & Francis
1 publication, 14.29%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
7
Share
Cite this
GOST |
Cite this
GOST Copy
Srivastava E. et al. Adversarial Data Augmentation and Transfer Net for Scrap Metal Identification Using Laser-Induced Breakdown Spectroscopy Measurement of Standard Reference Materials // Applied Spectroscopy. 2023. Vol. 77. No. 6. p. 000370282311702.
GOST all authors (up to 50) Copy
Srivastava E., Kim H., Lee J., Shin S., JEONG S., Hwang E. Adversarial Data Augmentation and Transfer Net for Scrap Metal Identification Using Laser-Induced Breakdown Spectroscopy Measurement of Standard Reference Materials // Applied Spectroscopy. 2023. Vol. 77. No. 6. p. 000370282311702.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1177/00037028231170234
UR - https://journals.sagepub.com/doi/10.1177/00037028231170234
TI - Adversarial Data Augmentation and Transfer Net for Scrap Metal Identification Using Laser-Induced Breakdown Spectroscopy Measurement of Standard Reference Materials
T2 - Applied Spectroscopy
AU - Srivastava, Ekta
AU - Kim, Hyebin
AU - Lee, Jaepil
AU - Shin, Sungho
AU - JEONG, SUNGHO
AU - Hwang, Euiseok
PY - 2023
DA - 2023/04/25
PB - SAGE
SP - 000370282311702
IS - 6
VL - 77
PMID - 37097821
SN - 0003-7028
SN - 1943-3530
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Srivastava,
author = {Ekta Srivastava and Hyebin Kim and Jaepil Lee and Sungho Shin and SUNGHO JEONG and Euiseok Hwang},
title = {Adversarial Data Augmentation and Transfer Net for Scrap Metal Identification Using Laser-Induced Breakdown Spectroscopy Measurement of Standard Reference Materials},
journal = {Applied Spectroscopy},
year = {2023},
volume = {77},
publisher = {SAGE},
month = {apr},
url = {https://journals.sagepub.com/doi/10.1177/00037028231170234},
number = {6},
pages = {000370282311702},
doi = {10.1177/00037028231170234}
}
MLA
Cite this
MLA Copy
Srivastava, Ekta, et al. “Adversarial Data Augmentation and Transfer Net for Scrap Metal Identification Using Laser-Induced Breakdown Spectroscopy Measurement of Standard Reference Materials.” Applied Spectroscopy, vol. 77, no. 6, Apr. 2023, p. 000370282311702. https://journals.sagepub.com/doi/10.1177/00037028231170234.