том 78 издание 4 страницы 387-397

Expert System for Fourier Transform Infrared Spectra Recognition Based on a Convolutional Neural Network With Multiclass Classification

Тип публикацииJournal Article
Дата публикации2024-01-28
scimago Q2
wos Q2
БС1
SJR0.456
CiteScore4.9
Impact factor2.2
ISSN00037028, 19433530
Spectroscopy
Instrumentation
Краткое описание

Fourier transform infrared spectroscopy (FT-IR) is a widely used spectroscopic method for routine analysis of substances and compounds. Spectral interpretation of spectra is a labor-intensive process that provides important information about functional groups or bonds present in compounds and complex substances. In this paper, based on deep learning methods of convolutional neural networks, models were developed to determine the presence of 17 classes of functional groups or 72 classes of coupling oscillations in the FT-IR spectra. Using web scanning, the spectra of 14 361 FT-IR spectra of organic molecules were obtained. Several different variants of model architectures with different sizes of feature maps have been tested. Based on the Shapley additive explanations (SHAP) and gradient-weighted class activation mapping (GradCAM) methods, visualization tools have been developed for visualizing and highlighting the areas of absorption bands manifestation for corresponding functional groups or bonds in the spectrum. To determine 17 and 72 classes, the F1-weighted metric, which is the harmonic mean of the class' precision and class' recall weighted by class' fraction, reached 93 and 88%, respectively, when using data on the position of absorption maxima in the spectrum as an additional source layer. The resulting model can be used to facilitate the routine analysis of spectra for all areas such as organic chemistry, materials science, and biology, as well as to facilitate the preparation of the obtained experimental data for publication.

Найдено 
Найдено 

Топ-30

Журналы

1
Mendeleev Communications
1 публикация, 10%
Optics Express
1 публикация, 10%
Scientific Reports
1 публикация, 10%
Journal of Chemical Information and Modeling
1 публикация, 10%
Frontiers in Mechanical Engineering
1 публикация, 10%
Analytica Chimica Acta
1 публикация, 10%
Analytical Chemistry
1 публикация, 10%
Applied Optics
1 публикация, 10%
Comprehensive Reviews in Food Science and Food Safety
1 публикация, 10%
1

Издатели

1
2
Optica Publishing Group
2 публикации, 20%
American Chemical Society (ACS)
2 публикации, 20%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 10%
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 10%
Springer Nature
1 публикация, 10%
Frontiers Media S.A.
1 публикация, 10%
Elsevier
1 публикация, 10%
Wiley
1 публикация, 10%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
10
Поделиться
Цитировать
ГОСТ |
Цитировать
Koshelev D. Expert System for Fourier Transform Infrared Spectra Recognition Based on a Convolutional Neural Network With Multiclass Classification // Applied Spectroscopy. 2024. Vol. 78. No. 4. pp. 387-397.
ГОСТ со всеми авторами (до 50) Скопировать
Koshelev D. Expert System for Fourier Transform Infrared Spectra Recognition Based on a Convolutional Neural Network With Multiclass Classification // Applied Spectroscopy. 2024. Vol. 78. No. 4. pp. 387-397.
RIS |
Цитировать
TY - JOUR
DO - 10.1177/00037028241226732
UR - https://journals.sagepub.com/doi/10.1177/00037028241226732
TI - Expert System for Fourier Transform Infrared Spectra Recognition Based on a Convolutional Neural Network With Multiclass Classification
T2 - Applied Spectroscopy
AU - Koshelev, Daniil
PY - 2024
DA - 2024/01/28
PB - SAGE
SP - 387-397
IS - 4
VL - 78
PMID - 38281905
SN - 0003-7028
SN - 1943-3530
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Koshelev,
author = {Daniil Koshelev},
title = {Expert System for Fourier Transform Infrared Spectra Recognition Based on a Convolutional Neural Network With Multiclass Classification},
journal = {Applied Spectroscopy},
year = {2024},
volume = {78},
publisher = {SAGE},
month = {jan},
url = {https://journals.sagepub.com/doi/10.1177/00037028241226732},
number = {4},
pages = {387--397},
doi = {10.1177/00037028241226732}
}
MLA
Цитировать
Koshelev, Daniil. “Expert System for Fourier Transform Infrared Spectra Recognition Based on a Convolutional Neural Network With Multiclass Classification.” Applied Spectroscopy, vol. 78, no. 4, Jan. 2024, pp. 387-397. https://journals.sagepub.com/doi/10.1177/00037028241226732.