Annals of Statistics, volume 44, issue 4

Nonparametric stochastic approximation with large step-sizes

Aymeric Dieuleveut 1
Francis Bach 1
1
 
Laboratoire d'informatique de l'école normale supérieure
Publication typeJournal Article
Publication date2016-07-07
scimago Q1
SJR5.335
CiteScore9.3
Impact factor3.2
ISSN00905364, 21688966
Statistics and Probability
Statistics, Probability and Uncertainty
Abstract
We consider the random-design least-squares regression problem within the reproducing kernel Hilbert space (RKHS) framework. Given a stream of independent and identically distributed input/output data, we aim to learn a regression function within an RKHS $\mathcal{H}$, even if the optimal predictor (i.e., the conditional expectation) is not in $\mathcal{H}$. In a stochastic approximation framework where the estimator is updated after each observation, we show that the averaged unregularized least-mean-square algorithm (a form of stochastic gradient), given a sufficient large step-size, attains optimal rates of convergence for a variety of regimes for the smoothnesses of the optimal prediction function and the functions in $\mathcal{H}$.
Found 
Found 

Top-30

Journals

1
2
3
4
1
2
3
4

Publishers

1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?