Open Access
Open access
том 5 издание 11 страницы e13984

Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation

Тип публикацииJournal Article
Дата публикации2010-11-15
scimago Q1
wos Q2
БС1
SJR0.803
CiteScore5.4
Impact factor2.6
ISSN19326203
Multidisciplinary
Краткое описание
Background Gene-set enrichment analysis is a useful technique to help functionally characterize large gene lists, such as the results of gene expression experiments. This technique finds functionally coherent gene-sets, such as pathways, that are statistically over-represented in a given gene list. Ideally, the number of resulting sets is smaller than the number of genes in the list, thus simplifying interpretation. However, the increasing number and redundancy of gene-sets used by many current enrichment analysis software works against this ideal. Principal Findings To overcome gene-set redundancy and help in the interpretation of large gene lists, we developed “Enrichment Map”, a network-based visualization method for gene-set enrichment results. Gene-sets are organized in a network, where each set is a node and edges represent gene overlap between sets. Automated network layout groups related gene-sets into network clusters, enabling the user to quickly identify the major enriched functional themes and more easily interpret the enrichment results. Conclusions Enrichment Map is a significant advance in the interpretation of enrichment analysis. Any research project that generates a list of genes can take advantage of this visualization framework. Enrichment Map is implemented as a freely available and user friendly plug-in for the Cytoscape network visualization software (http://baderlab.org/Software/EnrichmentMap/).
Найдено 
Найдено 

Топ-30

Журналы

10
20
30
40
50
60
70
80
90
Scientific Reports
87 публикаций, 4.42%
Nature Communications
82 публикации, 4.16%
PLoS ONE
55 публикаций, 2.79%
Cell Reports
32 публикации, 1.63%
Oncotarget
29 публикаций, 1.47%
International Journal of Molecular Sciences
29 публикаций, 1.47%
bioRxiv
24 публикации, 1.22%
eLife
23 публикации, 1.17%
BMC Genomics
21 публикация, 1.07%
iScience
19 публикаций, 0.96%
Nucleic Acids Research
19 публикаций, 0.96%
F1000Research
17 публикаций, 0.86%
Cell
16 публикаций, 0.81%
Cancer Cell
14 публикаций, 0.71%
Proceedings of the National Academy of Sciences of the United States of America
14 публикаций, 0.71%
Cancers
13 публикаций, 0.66%
Frontiers in Immunology
13 публикаций, 0.66%
Nature
13 публикаций, 0.66%
Frontiers in Genetics
12 публикаций, 0.61%
BMC Bioinformatics
11 публикаций, 0.56%
Bioinformatics
11 публикаций, 0.56%
Frontiers in Molecular Neuroscience
10 публикаций, 0.51%
Genome Biology
10 публикаций, 0.51%
Cell Death and Disease
10 публикаций, 0.51%
Journal of Proteome Research
10 публикаций, 0.51%
PLoS Computational Biology
9 публикаций, 0.46%
EMBO Journal
9 публикаций, 0.46%
Human Molecular Genetics
9 публикаций, 0.46%
Science advances
9 публикаций, 0.46%
10
20
30
40
50
60
70
80
90

Издатели

50
100
150
200
250
300
350
400
450
500
Springer Nature
486 публикаций, 24.68%
Elsevier
296 публикаций, 15.03%
Cold Spring Harbor Laboratory
272 публикации, 13.81%
Wiley
124 публикации, 6.3%
MDPI
93 публикации, 4.72%
Oxford University Press
89 публикаций, 4.52%
Public Library of Science (PLoS)
87 публикаций, 4.42%
Frontiers Media S.A.
84 публикации, 4.27%
Impact Journals
37 публикаций, 1.88%
American Association for Cancer Research (AACR)
31 публикация, 1.57%
American Association for the Advancement of Science (AAAS)
27 публикаций, 1.37%
eLife Sciences Publications
23 публикации, 1.17%
American Chemical Society (ACS)
22 публикации, 1.12%
Taylor & Francis
21 публикация, 1.07%
Spandidos Publications
20 публикаций, 1.02%
F1000 Research
17 публикаций, 0.86%
SAGE
16 публикаций, 0.81%
American Society for Microbiology
16 публикаций, 0.81%
American Society for Clinical Investigation
15 публикаций, 0.76%
Proceedings of the National Academy of Sciences (PNAS)
14 публикаций, 0.71%
The Company of Biologists
13 публикаций, 0.66%
Ovid Technologies (Wolters Kluwer Health)
13 публикаций, 0.66%
American Society for Biochemistry and Molecular Biology
12 публикаций, 0.61%
European Molecular Biology Organization
12 публикаций, 0.61%
Hindawi Limited
8 публикаций, 0.41%
Royal Society of Chemistry (RSC)
7 публикаций, 0.36%
The American Association of Immunologists
6 публикаций, 0.3%
Mary Ann Liebert
6 публикаций, 0.3%
PeerJ
6 публикаций, 0.3%
50
100
150
200
250
300
350
400
450
500
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2k
Поделиться
Цитировать
ГОСТ |
Цитировать
Merico D. et al. Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation // PLoS ONE. 2010. Vol. 5. No. 11. p. e13984.
ГОСТ со всеми авторами (до 50) Скопировать
Merico D., Isserlin R., Stueker O., Emili A., Bader G. D. Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation // PLoS ONE. 2010. Vol. 5. No. 11. p. e13984.
RIS |
Цитировать
TY - JOUR
DO - 10.1371/journal.pone.0013984
UR - https://doi.org/10.1371/journal.pone.0013984
TI - Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation
T2 - PLoS ONE
AU - Merico, Daniele
AU - Isserlin, Ruth
AU - Stueker, Oliver
AU - Emili, Andrew
AU - Bader, Gary D.
PY - 2010
DA - 2010/11/15
PB - Public Library of Science (PLoS)
SP - e13984
IS - 11
VL - 5
PMID - 21085593
SN - 1932-6203
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2010_Merico,
author = {Daniele Merico and Ruth Isserlin and Oliver Stueker and Andrew Emili and Gary D. Bader},
title = {Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation},
journal = {PLoS ONE},
year = {2010},
volume = {5},
publisher = {Public Library of Science (PLoS)},
month = {nov},
url = {https://doi.org/10.1371/journal.pone.0013984},
number = {11},
pages = {e13984},
doi = {10.1371/journal.pone.0013984}
}
MLA
Цитировать
Merico, Daniele, et al. “Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation.” PLoS ONE, vol. 5, no. 11, Nov. 2010, p. e13984. https://doi.org/10.1371/journal.pone.0013984.