Open Access
Open access
том 8 издание 4 страницы e61007

Comparability of Mixed IC50 Data – A Statistical Analysis

Tuomo Kalliokoski 1
Christian Kramer 1
Anna Vulpetti 1
Peter Gedeck 1
1
 
Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
Тип публикацииJournal Article
Дата публикации2013-04-16
scimago Q1
wos Q2
БС1
SJR0.803
CiteScore5.4
Impact factor2.6
ISSN19326203
Multidisciplinary
Краткое описание
The biochemical half maximal inhibitory concentration (IC50) is the most commonly used metric for on-target activity in lead optimization. It is used to guide lead optimization, build large-scale chemogenomics analysis, off-target activity and toxicity models based on public data. However, the use of public biochemical IC50 data is problematic, because they are assay specific and comparable only under certain conditions. For large scale analysis it is not feasible to check each data entry manually and it is very tempting to mix all available IC50 values from public database even if assay information is not reported. As previously reported for Ki database analysis, we first analyzed the types of errors, the redundancy and the variability that can be found in ChEMBL IC50 database. For assessing the variability of IC50 data independently measured in two different labs at least ten IC50 data for identical protein-ligand systems against the same target were searched in ChEMBL. As a not sufficient number of cases of this type are available, the variability of IC50 data was assessed by comparing all pairs of independent IC50 measurements on identical protein-ligand systems. The standard deviation of IC50 data is only 25% larger than the standard deviation of Ki data, suggesting that mixing IC50 data from different assays, even not knowing assay conditions details, only adds a moderate amount of noise to the overall data. The standard deviation of public ChEMBL IC50 data, as expected, resulted greater than the standard deviation of in-house intra-laboratory/inter-day IC50 data. Augmenting mixed public IC50 data by public Ki data does not deteriorate the quality of the mixed IC50 data, if the Ki is corrected by an offset. For a broad dataset such as ChEMBL database a Ki- IC50 conversion factor of 2 was found to be the most reasonable.
Найдено 
Найдено 

Топ-30

Журналы

10
20
30
40
50
60
Journal of Chemical Information and Modeling
52 публикации, 20.31%
Journal of Cheminformatics
12 публикаций, 4.69%
Journal of Medicinal Chemistry
11 публикаций, 4.3%
Drug Discovery Today
6 публикаций, 2.34%
Frontiers in Pharmacology
5 публикаций, 1.95%
Journal of Computer-Aided Molecular Design
5 публикаций, 1.95%
Molecules
4 публикации, 1.56%
Computers in Biology and Medicine
4 публикации, 1.56%
ACS Omega
4 публикации, 1.56%
Chemical Research in Toxicology
4 публикации, 1.56%
Future Medicinal Chemistry
3 публикации, 1.17%
International Journal of Molecular Sciences
3 публикации, 1.17%
PLoS ONE
3 публикации, 1.17%
Computational Biology and Chemistry
3 публикации, 1.17%
ChemMedChem
3 публикации, 1.17%
Methods in Molecular Biology
3 публикации, 1.17%
Briefings in Bioinformatics
3 публикации, 1.17%
Nucleic Acids Research
2 публикации, 0.78%
Frontiers in Microbiology
2 публикации, 0.78%
Molecular Diversity
2 публикации, 0.78%
Nature Reviews Drug Discovery
2 публикации, 0.78%
PLoS Computational Biology
2 публикации, 0.78%
Molecular Informatics
2 публикации, 0.78%
Journal of Chemical Theory and Computation
2 публикации, 0.78%
SAR and QSAR in Environmental Research
2 публикации, 0.78%
Bioinformatics
2 публикации, 0.78%
Methods in Pharmacology and Toxicology
2 публикации, 0.78%
Pharmaceuticals
2 публикации, 0.78%
Scientific Reports
2 публикации, 0.78%
10
20
30
40
50
60

Издатели

10
20
30
40
50
60
70
80
American Chemical Society (ACS)
77 публикаций, 30.08%
Springer Nature
39 публикаций, 15.23%
Elsevier
36 публикаций, 14.06%
Wiley
17 публикаций, 6.64%
Cold Spring Harbor Laboratory
15 публикаций, 5.86%
MDPI
12 публикаций, 4.69%
Taylor & Francis
11 публикаций, 4.3%
Frontiers Media S.A.
10 публикаций, 3.91%
Royal Society of Chemistry (RSC)
8 публикаций, 3.13%
Oxford University Press
7 публикаций, 2.73%
Public Library of Science (PLoS)
5 публикаций, 1.95%
Bentham Science Publishers Ltd.
3 публикации, 1.17%
Spandidos Publications
2 публикации, 0.78%
Ovid Technologies (Wolters Kluwer Health)
2 публикации, 0.78%
Hindawi Limited
2 публикации, 0.78%
SAGE
1 публикация, 0.39%
Chem-Bio Informatics Society
1 публикация, 0.39%
American Association for Cancer Research (AACR)
1 публикация, 0.39%
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 0.39%
Mary Ann Liebert
1 публикация, 0.39%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 0.39%
American Association for the Advancement of Science (AAAS)
1 публикация, 0.39%
10
20
30
40
50
60
70
80
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
256
Поделиться
Цитировать
ГОСТ |
Цитировать
Kalliokoski T. et al. Comparability of Mixed IC50 Data – A Statistical Analysis // PLoS ONE. 2013. Vol. 8. No. 4. p. e61007.
ГОСТ со всеми авторами (до 50) Скопировать
Kalliokoski T., Kramer C., Vulpetti A., Gedeck P. Comparability of Mixed IC50 Data – A Statistical Analysis // PLoS ONE. 2013. Vol. 8. No. 4. p. e61007.
RIS |
Цитировать
TY - JOUR
DO - 10.1371/journal.pone.0061007
UR - https://doi.org/10.1371/journal.pone.0061007
TI - Comparability of Mixed IC50 Data – A Statistical Analysis
T2 - PLoS ONE
AU - Kalliokoski, Tuomo
AU - Kramer, Christian
AU - Vulpetti, Anna
AU - Gedeck, Peter
PY - 2013
DA - 2013/04/16
PB - Public Library of Science (PLoS)
SP - e61007
IS - 4
VL - 8
PMID - 23613770
SN - 1932-6203
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2013_Kalliokoski,
author = {Tuomo Kalliokoski and Christian Kramer and Anna Vulpetti and Peter Gedeck},
title = {Comparability of Mixed IC50 Data – A Statistical Analysis},
journal = {PLoS ONE},
year = {2013},
volume = {8},
publisher = {Public Library of Science (PLoS)},
month = {apr},
url = {https://doi.org/10.1371/journal.pone.0061007},
number = {4},
pages = {e61007},
doi = {10.1371/journal.pone.0061007}
}
MLA
Цитировать
Kalliokoski, Tuomo, et al. “Comparability of Mixed IC50 Data – A Statistical Analysis.” PLoS ONE, vol. 8, no. 4, Apr. 2013, p. e61007. https://doi.org/10.1371/journal.pone.0061007.