Analitika i Kontrol, volume 25, issue 3, pages 193-204

Voltammetric sensor based on the copper (II) amino acid complex for the determination of tryptophan enantiomers

Publication typeJournal Article
Publication date2021-10-12
scimago Q4
SJR0.151
CiteScore0.9
Impact factor
ISSN20731442, 20731450
Analytical Chemistry
Abstract

A voltammetric sensor based on a composite of polyarylene phthalide and graphitized carbon black Carboblack C modified with chelate complexes of L-argenato-L-alaninate of copper (II) has been developed for the recognition and selective determination of tryptophan enantiomers. The conditions for modifying the sensor are optimized, the effective surface area (A = 4.38 ± 0.06 mm2) and the effective resistance (Ret = 1.29 ± 0.08 kΩ) are calculated. The optimal conditions for recording voltammograms of tryptophan enantiomers are selected: the range of operating potentials is 0.5-1.2 V, the potential sweep rate is 20 mV/s, the holding time of the electrode in the test solution is 5 s. The electrochemical and analytical characteristics of the sensor were studied when registering differential pulse voltammograms of tryptophan enantiomers. It is shown that the dependence of the analytical signal on the concentration is linear in the range from 1.25·10-6 to 1·10-3 M with detection limits of 0.90·10-6 M for L-Trp and 0.66·10-6 M for D-Trp. The developed sensor shows the greatest sensitivity to D-Trp. The sensor has been successfully tested to determine the content of L- and D-Trp in enantiomer solutions in the presence of excipients that are part of medicines and biologically active additives. The proposed sensor allows the determination of tryptophan enantiomers in human urine and blood plasma. To evaluate the analytical capabilities of the sensor, the "entered-found" method was used. When determining tryptophan enantiomers in model solutions, the relative standard deviation does not exceed 2.3 %, and the relative error is 1.7 %. When determining D- and L-Trp in biological fluids, the relative standard deviation ranges from 0.3-1.7 %, and the relative error ranges from 0.3-5.6 %. The research results show that there is no significant systematic error.

Top-30

Journals

1
1

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?