Open Access
Open access

Short-Term Nacelle Orientation Forecasting Using Bilinear Transformation and ICEEMDAN Framework

Тип публикацииJournal Article
Дата публикации2021-10-26
scimago Q2
wos Q3
БС2
SJR0.553
CiteScore5.0
Impact factor2.4
ISSN2296598X
Energy Engineering and Power Technology
Fuel Technology
Renewable Energy, Sustainability and the Environment
Economics and Econometrics
Краткое описание

To maximize energy extraction, the nacelle of a wind turbine follows the wind direction. Accurate prediction of wind direction is vital for yaw control. A tandem hybrid approach to improve the prediction accuracy of the wind direction data is developed. The proposed approach in this paper includes the bilinear transformation, effective data decomposition techniques, long-short-term-memory recurrent neural networks (LSTM-RNNs), and error decomposition correction methods. In the proposed approach, the angular wind direction data is firstly transformed into time-series to accommodate the full range of yaw motion. Then, the continuous transformed series are decomposed into a group of subseries using a novel decomposition technique. Next, for each subseries, the wind directions are predicted using LSTM-RNNs. In the final step, it decomposed the errors for each predicted subseries to correct the predicted wind direction and then perform inverse bilinear transformation to obtain the final wind direction forecasting. The robustness and effectiveness of the proposed approach are verified using data collected from a wind farm located in Huitengxile, Inner Mongolia, China. Computational results indicate that the proposed hybrid approach outperforms the other single approaches tested to predict the nacelle direction over short-time horizons. The proposed approach can be useful for practical wind farm operations.

Найдено 
Найдено 

Топ-30

Журналы

5
10
15
20
25
30
35
40
Frontiers in Energy Research
39 публикаций, 30.95%
Frontiers in Earth Science
36 публикаций, 28.57%
Frontiers in Environmental Science
7 публикаций, 5.56%
Frontiers in Ecology and Evolution
6 публикаций, 4.76%
Applied Sciences (Switzerland)
3 публикации, 2.38%
IEEE Transactions on Sustainable Energy
3 публикации, 2.38%
Applied Mathematics and Nonlinear Sciences
3 публикации, 2.38%
Electronics (Switzerland)
2 публикации, 1.59%
Mechanical Systems and Signal Processing
1 публикация, 0.79%
Sensors
1 публикация, 0.79%
Biosensors
1 публикация, 0.79%
Diagnostics
1 публикация, 0.79%
Algorithms
1 публикация, 0.79%
Frontiers in Neurorobotics
1 публикация, 0.79%
Bioengineering
1 публикация, 0.79%
Social Network Analysis and Mining
1 публикация, 0.79%
Frontiers in Oncology
1 публикация, 0.79%
International Journal of Mechanical Sciences
1 публикация, 0.79%
Ocean Engineering
1 публикация, 0.79%
Energy Reports
1 публикация, 0.79%
Energy and AI
1 публикация, 0.79%
Optik
1 публикация, 0.79%
Reliability Engineering and System Safety
1 публикация, 0.79%
Journal of Computational Design and Engineering
1 публикация, 0.79%
Journal of Environmental and Public Health
1 публикация, 0.79%
Energy
1 публикация, 0.79%
Sustainability
1 публикация, 0.79%
Ecological Indicators
1 публикация, 0.79%
Advances in Civil Engineering
1 публикация, 0.79%
IEEE Transactions on Power Delivery
1 публикация, 0.79%
5
10
15
20
25
30
35
40

Издатели

10
20
30
40
50
60
70
80
90
Frontiers Media S.A.
90 публикаций, 71.43%
Elsevier
12 публикаций, 9.52%
MDPI
12 публикаций, 9.52%
Institute of Electrical and Electronics Engineers (IEEE)
4 публикации, 3.17%
Walter de Gruyter
3 публикации, 2.38%
Springer Nature
2 публикации, 1.59%
Oxford University Press
1 публикация, 0.79%
Hindawi Limited
1 публикация, 0.79%
Wiley
1 публикация, 0.79%
10
20
30
40
50
60
70
80
90
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
126
Поделиться
Цитировать
ГОСТ |
Цитировать
Li H. et al. Short-Term Nacelle Orientation Forecasting Using Bilinear Transformation and ICEEMDAN Framework // Frontiers in Energy Research. 2021. Vol. 9.
ГОСТ со всеми авторами (до 50) Скопировать
Li H., Deng J., Feng P., Pu C., Arachchige D. D. K., Cheng Qian Short-Term Nacelle Orientation Forecasting Using Bilinear Transformation and ICEEMDAN Framework // Frontiers in Energy Research. 2021. Vol. 9.
RIS |
Цитировать
TY - JOUR
DO - 10.3389/fenrg.2021.780928
UR - https://doi.org/10.3389/fenrg.2021.780928
TI - Short-Term Nacelle Orientation Forecasting Using Bilinear Transformation and ICEEMDAN Framework
T2 - Frontiers in Energy Research
AU - Li, Huajin
AU - Deng, Jiahao
AU - Feng, Peng
AU - Pu, Chuanhao
AU - Arachchige, Dimuthu D K
AU - Cheng Qian
PY - 2021
DA - 2021/10/26
PB - Frontiers Media S.A.
VL - 9
SN - 2296-598X
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Li,
author = {Huajin Li and Jiahao Deng and Peng Feng and Chuanhao Pu and Dimuthu D K Arachchige and Cheng Qian},
title = {Short-Term Nacelle Orientation Forecasting Using Bilinear Transformation and ICEEMDAN Framework},
journal = {Frontiers in Energy Research},
year = {2021},
volume = {9},
publisher = {Frontiers Media S.A.},
month = {oct},
url = {https://doi.org/10.3389/fenrg.2021.780928},
doi = {10.3389/fenrg.2021.780928}
}