Open Access
Open access
том 7 издание 5 страницы 64

The Industry Internet of Things (IIoT) as a Methodology for Autonomous Diagnostics in Aerospace Structural Health Monitoring

Тип публикацииJournal Article
Дата публикации2020-05-24
scimago Q2
wos Q2
БС1
SJR0.580
CiteScore4.0
Impact factor2.2
ISSN22264310
Aerospace Engineering
Краткое описание

Structural Health Monitoring (SHM), defined as the process that involves sensing, computing, and decision making to assess the integrity of infrastructure, has been plagued by data management challenges. The Industrial Internet of Things (IIoT), a subset of Internet of Things (IoT), provides a way to decisively address SHM’s big data problem and provide a framework for autonomous processing. The key focus of IIoT is operational efficiency and cost optimization. The purpose, therefore, of the IIoT approach in this investigation is to develop a framework that connects nondestructive evaluation sensor data with real-time processing algorithms on an IoT hardware/software system to provide diagnostic capabilities for efficient data processing related to SHM. Specifically, the proposed IIoT approach is comprised of three components: the Cloud, the Fog, and the Edge. The Cloud is used to store historical data as well as to perform demanding computations such as off-line machine learning. The Fog is the hardware that performs real-time diagnostics using information received both from sensing and the Cloud. The Edge is the bottom level hardware that records data at the sensor level. In this investigation, an application of this approach to evaluate the state of health of an aerospace grade composite material at laboratory conditions is presented. The key link that limits human intervention in data processing is the implemented database management approach which is the particular focus of this manuscript. Specifically, a NoSQL database is implemented to provide live data transfer from the Edge to both the Fog and Cloud. Through this database, the algorithms used are capable to execute filtering by classification at the Fog level, as live data is recorded. The processed data is automatically sent to the Cloud for further operations such as visualization. The system integration with three layers provides an opportunity to create a paradigm for intelligent real-time data quality management.

Найдено 
Найдено 

Топ-30

Журналы

1
Future Internet
1 публикация, 5%
Progress in Aerospace Sciences
1 публикация, 5%
Applied Nanoscience (Switzerland)
1 публикация, 5%
Sensors
1 публикация, 5%
Journal of Air Transport Management
1 публикация, 5%
Information (Switzerland)
1 публикация, 5%
Mechanical Systems and Signal Processing
1 публикация, 5%
Engineering
1 публикация, 5%
IEEE Internet of Things Journal
1 публикация, 5%
Applied Sciences (Switzerland)
1 публикация, 5%
Computers in Industry
1 публикация, 5%
Frontiers in Future Transportation
1 публикация, 5%
Journal of Nondestructive Evaluation
1 публикация, 5%
Communications in Computer and Information Science
1 публикация, 5%
Recent Patents on Mechanical Engineering
1 публикация, 5%
Journal of Intelligent Material Systems and Structures
1 публикация, 5%
1

Издатели

1
2
3
4
5
Elsevier
5 публикаций, 25%
MDPI
4 публикации, 20%
Springer Nature
3 публикации, 15%
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 15%
ASTM International
1 публикация, 5%
Frontiers Media S.A.
1 публикация, 5%
Bentham Science Publishers Ltd.
1 публикация, 5%
SAGE
1 публикация, 5%
1
2
3
4
5
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
20
Поделиться
Цитировать
ГОСТ |
Цитировать
Malik S. et al. The Industry Internet of Things (IIoT) as a Methodology for Autonomous Diagnostics in Aerospace Structural Health Monitoring // Aerospace. 2020. Vol. 7. No. 5. p. 64.
ГОСТ со всеми авторами (до 50) Скопировать
Malik S., Rouf R., Mazur K., Kontsos A. The Industry Internet of Things (IIoT) as a Methodology for Autonomous Diagnostics in Aerospace Structural Health Monitoring // Aerospace. 2020. Vol. 7. No. 5. p. 64.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/aerospace7050064
UR - https://doi.org/10.3390/aerospace7050064
TI - The Industry Internet of Things (IIoT) as a Methodology for Autonomous Diagnostics in Aerospace Structural Health Monitoring
T2 - Aerospace
AU - Malik, Sarah
AU - Rouf, Rakeen
AU - Mazur, Krzysztof
AU - Kontsos, A
PY - 2020
DA - 2020/05/24
PB - MDPI
SP - 64
IS - 5
VL - 7
SN - 2226-4310
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Malik,
author = {Sarah Malik and Rakeen Rouf and Krzysztof Mazur and A Kontsos},
title = {The Industry Internet of Things (IIoT) as a Methodology for Autonomous Diagnostics in Aerospace Structural Health Monitoring},
journal = {Aerospace},
year = {2020},
volume = {7},
publisher = {MDPI},
month = {may},
url = {https://doi.org/10.3390/aerospace7050064},
number = {5},
pages = {64},
doi = {10.3390/aerospace7050064}
}
MLA
Цитировать
Malik, Sarah, et al. “The Industry Internet of Things (IIoT) as a Methodology for Autonomous Diagnostics in Aerospace Structural Health Monitoring.” Aerospace, vol. 7, no. 5, May. 2020, p. 64. https://doi.org/10.3390/aerospace7050064.