Open Access
Open access
Biomechanics, volume 5, issue 1, pages 6

Wearable Visual Biofeedback of Vertical Ground Reaction Force Enables More Symmetrical Force Production During Deadlifting and Squatting

Publication typeJournal Article
Publication date2025-01-21
Journal: Biomechanics
SJR
CiteScore1.5
Impact factor
ISSN26737078
Abstract

Background/Objectives: Asymmetries in force production, characterized by vertical ground reaction forces (VGRFs), during lower-limb bilateral movements such as deadlifting and squatting, are considered biomechanical risk factors for injury. Real-time biofeedback has been used to modify lower limb force production but typically implements monitors. The purpose of this study was to determine the effect of wearable visual biofeedback (WVBF) on asymmetries in VGRFs and knee joint angles and the rate of perceived exertion (RPE) during deadlift and body-weight squatting (BWS) exercises in recreational powerlifters. Methods: Thirteen healthy young adults between 18–35 years of age performed three tasks: deadlifting for mixed-grip style (MIX), double-overhand style (DO), and BWS. Each task included two conditions: with and without WVBF. A two-way (Condition X Task) mixed model analysis of variance was performed to compare the bilateral asymmetry index of VGRFs, knee angle, and RPE scores. Results: A main effect of the condition (with versus without WVBF) was detected for VGRF symmetry (F (1,12) = 62.785, p < 0.001). WVBF showed decreased VGRF asymmetry compared to no biofeedback. For knee angle, a significant condition X task interaction (F (2,24) = 3.505, p < 0.05) was observed. For RPE, a main effect of the condition was observed (F (1,12) = 8.995, p < 0.05). WVBF showed greater RPE compared to no biofeedback. Conclusions: These results indicated that WVBF could reduce VGRF asymmetry during deadlifting and squatting. In addition, targeting force production symmetry may not directly yield joint angle symmetry and may increase perceived exertion. These results could provide valuable insight into VGRF modulation during deadlifting and squatting exercises in athletic and potentially clinical settings when targeting VGRF symmetry.

Powers C.M., Straub R.K.
Physical Therapy in Sport scimago Q1 wos Q2
2022-09-01 citations by CoLab: 3 Abstract  
To determine whether quadriceps strength symmetry can predict peak vertical ground reaction force (vGRF) running force symmetry in patients who have undergone ACL reconstruction (ACLR). We also sought to determine a cutoff for quadriceps strength symmetry to identify patients at risk for vGRF running asymmetry. Retrospective cross-sectional. Clinical facility. Bilateral quadriceps strength and vGRF data during running were obtained from 79 patients 26–30 weeks post ACLR. Linear regression was used to determine if quadriceps strength symmetry predicted peak vGRF running force symmetry. Classification and regression tree (CART) analysis was used to determine the cutoff value for quadriceps strength symmetry to identify patients at risk for vGRF running asymmetry. Increased quadriceps strength symmetry predicted increased vGRF running symmetry (R 2 = 0.20). CART analysis revealed that patients with quadriceps strength symmetry less than or equal to 88% were at highest risk for vGRF running asymmetry (R 2 = 26%). Greater quadriceps strength symmetry is predictive of greater vGRF running force symmetry in patients who have undergone ACLR. This finding highlights the need for clinicians to consider the degree of quadriceps strength symmetry before initiating a return to running program. • Quadriceps strength symmetry predicts vGRF running force symmetry 6 months post ACLR. • Quadriceps strength symmetry ≤ 88% results in higher risk vGRF running asymmetry. • Quadriceps strength symmetry should be considered before initiating running post-ACLR.
Chen J., Or C.K., Chen T.
2022-06-20 citations by CoLab: 100 Abstract  
BackgroundIn recent years, efforts have been made to implement virtual reality (VR) to support the delivery of poststroke upper extremity motor rehabilitation exercises. Therefore, it is important to review and analyze the existing research evidence of its effectiveness.ObjectiveThrough a systematic review and meta-analysis of randomized controlled trials, this study examined the effectiveness of using VR-supported exercise therapy for upper extremity motor rehabilitation in patients with stroke.MethodsThis study followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The CINAHL Plus, MEDLINE, Web of Science, Embase, and Cochrane Library databases were searched on December 31, 2021. Changes in outcomes related to impairments in upper extremity functions and structures, activity limitations, and participation restrictions in life situations from baseline to after intervention, after intervention to follow-up assessment, and baseline to follow-up assessment were examined. Standardized mean differences (SMDs) were calculated using a random-effects model. Subgroup analyses were performed to determine whether the differences in treatment outcomes depended on age, stroke recovery stage, VR program type, therapy delivery format, similarities in intervention duration between study groups, intervention duration in VR groups, and trial length.ResultsA total of 42 publications representing 43 trials (aggregated sample size=1893) were analyzed. Compared with the control groups that used either conventional therapy or no therapy, the intervention groups that used VR to support exercise therapy showed significant improvements in upper extremity motor function (Fugl-Meyer Assessment-Upper Extremity; SMD 0.45, 95% CI 0.21-0.68; P<.001), range of motion (goniometer; SMD 1.01, 95% CI 0.50-1.52; P<.001), muscle strength (Manual Muscle Testing; SMD 0.79, 95% CI 0.28-1.30; P=.002), and independence in day-to-day activities (Functional Independence Measure; SMD 0.23, 95% CI 0.06-0.40; P=.01, and modified Rankin Scale; SMD 0.57, 95% CI 0.01-1.12; P=.046). Significant subgroup differences were observed in hand dexterity (Box and Block Test), spasticity (Ashworth Scale or modified Ashworth Scale), arm and hand motor ability (Wolf Motor Function Test and Manual Function Test), hand motor ability (Jebsen Hand Function Test), and quality of life (Stroke Impact Scale). There was no evidence that the benefits of VR-supported exercise therapy were maintained after the intervention ended.ConclusionsVR-supported upper extremity exercise therapy can be effective in improving motor rehabilitation results. Our review showed that of the 12 rehabilitation outcomes examined during the course of VR-based therapy, significant improvements were detected in 2 (upper extremity motor function and range of motion), and both significant and nonsignificant improvements were observed in another 2 (muscle strength and independence in day-to-day activities), depending on the measurement tools or methods used.Trial RegistrationPROSPERO CRD42021256826; https://tinyurl.com/2uarftbh
Wang I., Wang L., Liu Y., Su Y., Yao S., Ho C.
2021-09-13 citations by CoLab: 5 PDF Abstract  
Balance control with an upright posture is affected by many factors. This study was undertaken to investigate the effects of real-time visual feedback training, provided by smart wearable devices for COP changes for healthy females, on static stance. Thirty healthy female college students were randomly divided into three groups (visual feedback balance training group, non-visual feedback balance training group, and control group). Enhanced visual feedback on the screen appeared in different directions, in the form of fluctuations; the visual feedback balance training group received real-time visual feedback from the Podoon APP for training, while the non-visual feedback balance training group only performed an open-eye balance, without receiving real-time visual feedback. The control group did not do any balance training. The balance training lasted 4 weeks, three times a week for 30 min each time with 1–2 day intervals. After four weeks of balance training, the results showed that the stability of human posture control improved for the one leg static stance for the visual feedback balance training group with smart wearable devices. The parameters of COP max displacement, COP velocity, COP radius, and COP area in the visual feedback balance training group were significantly decreased in the one leg stance (p < 0.05). The results showed that the COP real-time visual feedback training provided by smart wearable devices can better reduce postural sway and improve body balance ability than general training, when standing quietly.
Queen R.M., Peebles A.T., Miller T.K., Savla J., Ollendick T., Messier S.P., Williams D.B.
2021-06-01 citations by CoLab: 8 Abstract  
Nearly 1 in 60 adolescent athletes will suffer anterior cruciate ligament (ACL) injuries with 90% of these athletes electing to undergo an ACL reconstruction (ACLR) at an estimated annual cost of $3 billion. While ACLR and subsequent rehabilitation allow these athletes to return to sports, they have a 15-fold increased risk of second ACL injuries. The modification of post-operative rehabilitation to improve movement and loading symmetry using visual and tactile biofeedback could decrease the risk factors for sustaining a second ACL injury. Participants included 40 adolescent ACLR patients who were intending to return to full sport participation. This preliminary randomized controlled trial (RCT) examined the changes in knee extension moment symmetry, a known risk factor for second ACL injuries, during landing from a stop-jump task between the following time-points: pre-intervention, immediate post-intervention, and subsequent follow-up 6-weeks post-intervention. Participants met twice per week for six-weeks (12-session). The intervention included bilateral squat biofeedback (visual and tactile); the attention control group attended weekly educational sessions. This RCT enrolled and randomize 40 participants over a two-and-a-half-year period. All participants were greater than 4.5 months post-op from a primary, unilateral ACLR and were released to participate by their treating physician. The findings from this pilot biofeedback RCT will provide critical effect size estimates for use in subsequent larger clinical trials.
Kohn M.A., Smith M.C., Goble D.J.
2021-05-14 citations by CoLab: 1 Abstract  
The purpose of this study was to quantify differences in barbell back squat stability as a function of gaze direction. Sixteen female subjects who were experienced in barbell back squatting performed six sets of three squat repetitions, randomized according to three gaze directions (DOWN, STRAIGHT, and UP). Stability was determined based on the displacement of center of pressure (COP) during each squat repetition, measured using a low-cost, portable force plate. Multiple t-tests with statistical significance set at p < 0.05 were conducted between gaze directions and revealed significant differences in stability between the DOWN versus UP conditions. Specifically, DOWN had the smallest COP displacement, with significantly larger COP displacement in the UP condition (p = 0.02). There were no significant differences when DOWN or UP was compared to STRAIGHT (p = 0.22 and p = 0.28 respectively). From a practical standpoint, these results suggest that having a downward gaze direction during barbell back squat will maximize stability and reduce the likelihood of injury.
Hedrick E.A., Parker S.M., Hsiao H., Knarr B.A.
Journal of Biomechanics scimago Q1 wos Q3
2021-01-01 citations by CoLab: 9 Abstract  
Older adults typically demonstrate reductions in overground walking speeds and propulsive forces compared to young adults. These reductions in walking speeds are risk factors for negative health outcomes. Therefore, this study aimed to determine the effect of an adaptive speed treadmill controller on walking speed and propulsive forces in older adults, including the mechanisms and strategies underlying any change in propulsive force between conditions. Seventeen participants completed two treadmill conditions, one with a fixed comfortable walking speed and one with an adaptive speed controller. The adaptive speed treadmill controller utilized a set of inertial-force, gait parameters, and position-based controllers that respond to an instantaneous anterior inertial force. A biomechanical-based model previously developed for individuals post-stroke was implemented for older adults to determine the primary gait parameters that contributed to the change in propulsive forces when increasing speed. Participants walked at faster average speeds during the adaptive speed controller (1.20 m/s) compared to the fixed speed controller conditions (0.98 m/s); however, these speeds were not as fast as their overground speed (1.44 m/s). Although average trailing limb angle (TLA) (p < 0.001) and ankle moment (p = 0.020) increased when speed also increased between treadmill conditions, increasing TLA contributed more to the increased propulsive forces seen during faster treadmill speeds. Our findings show that older adults chose faster walking speeds and increased propulsive force when walking on an adaptive speed treadmill compared to a fixed speed treadmill, suggesting that an adaptive speed treadmill controller has the potential to be a beneficial alternative to current exercise interventions for older adults.
Whittal M.C., Zwambag D.P., Vanderheyden L.W., McKie G.L., Hazell T.J., Gregory D.E.
2020-09-22 citations by CoLab: 4 PDF Abstract  
This study investigated weight distribution between the lower limbs using a symmetry index (SI) score of the vertical ground reaction forces (GRF) and measures of postural stability in high load/low repetition (termed "heavy") and low load/high repetition (termed "light") deadlifting. Ten participants performed two deadlift protocols with equal cumulative external load. These protocols were designed to represent standard high load/low repetition and low load/high repetition workouts; order was random and separated by 7 days. An effect of lifting condition (p = .023) and set number (p = .011) was observed such that lifts in the heavy condition were less symmetrical than those in the light condition and lifts become more symmetrical as set number increased. There was no effect of lift number on symmetry of force production (p = .127). Additional analysis revealed that centre of pressure (COP) path length was greater during heavy lifts (p = .002) however COP range was unaffected suggesting controlled point of force application within the same boundaries regardless of lifting condition. As asymmetries have been previously associated with increased injury risk, greater training emphasis on the symmetrical performance of sub-maximal deadlifts should be considered to try to minimize the development of asymmetries.
Pratt J., Hoffman A., Grainger A., Ditroilo M.
2020-08-01 citations by CoLab: 10 Abstract  
Muscle activation, peak velocity (PV) and perceived technical difficulty while using three grip variations and three loads during a deadlift exercise (DL) were examined. Twenty-nine resistance-trained athletes (15 males, age: 22.2 ± 2.7 years; 14 females, age: 24.8 ± 7.0 years) performed the DL with 50%, 70% and 90% of their one repetition maximum (1RM) using hook grip (HG), mixed grip (MG) and double overhand (DOH) grip. Surface electromyography (EMG) of the brachialis (BS), brachioradialis (BR) and flexor carpi ulnaris (FCU) was recorded. PV and perceived technical difficulty of each grip were also measured. Regardless of load and grip, females exhibited greater BS activation compared to males (p < 0.05; ES = 0.69) while males displayed greater BR activation, significant at 90% load (p < 0.01; ES = 1.01). MG elicited the least BR and FCU activation regardless of load and sex (p < 0.01; ES = 0.64-0.68) and was consistently ranked as the easiest grip for any load. Males achieved significantly greater PV than females at 50% and 70% (p < 0.01; ES = 1.72-1.92). Hand orientation did not significantly impact PV. A MG may be beneficial in reducing the overall perceived technical difficulty when performing a maximal DL. Athletes aiming to maximise muscle activation and potentially develop their grip strength should utilise a DOH grip or HG.
Escamilla-Nunez R., Michelini A., Andrysek J.
Sensors scimago Q1 wos Q2 Open Access
2020-03-14 citations by CoLab: 36 PDF Abstract  
Individuals with lower-limb amputation often have gait deficits and diminished mobility function. Biofeedback systems have the potential to improve gait rehabilitation outcomes. Research on biofeedback has steadily increased in recent decades, representing the growing interest toward this topic. This systematic review highlights the methodological designs, main technical and clinical challenges, and evidence relating to the effectiveness of biofeedback systems for gait rehabilitation. This review provides insights for developing an effective, robust, and user-friendly wearable biofeedback system. The literature search was conducted on six databases and 31 full-text articles were included in this review. Most studies found biofeedback to be effective in improving gait. Biofeedback was most commonly concurrently provided and related to limb loading and symmetry ratios for stance or step time. Visual feedback was the most used modality, followed by auditory and haptic. Biofeedback must not be obtrusive and ideally provide a level of enjoyment to the user. Biofeedback appears to be most effective during the early stages of rehabilitation but presents some usability challenges when applied to the elderly. More research is needed on younger populations and higher amputation levels, understanding retention as well as the relationship between training intensity and performance.
Martín-Fuentes I., Oliva-Lozano J.M., Muyor J.M.
PLoS ONE scimago Q1 wos Q1 Open Access
2020-02-27 citations by CoLab: 40 PDF Abstract  
The main purpose of this review was to systematically analyze the literature concerning studies which have investigated muscle activation when performing the Deadlift exercise and its variants. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Statement (PRISMA). Original studies from inception until March 2019 were sourced from four electronic databases including PubMed, OVID, Scopus and Web of Science. Inclusion criteria were as follows: (a) a cross-sectional or longitudinal study design; (b) evaluation of neuromuscular activation during Deadlift exercise or variants; (c) inclusion of healthy and trained participants, with no injury issues at least for six months before measurements; and (d) analyzed “sEMG amplitude”, “muscle activation” or “muscular activity” with surface electromyography (sEMG) devices. Major findings indicate that the biceps femoris is the most studied muscle, followed by gluteus maximus, vastus lateralis and erector spinae. Erector spinae and quadriceps muscles reported greater activation than gluteus maximus and biceps femoris muscles during Deadlift exercise and its variants. However, the Romanian Deadlift is associated with lower activation for erector spinae than for biceps femoris and semitendinosus. Deadlift also showed greater activation of the quadriceps muscles than the gluteus maximus and hamstring muscles. In general, semitendinosus muscle activation predominates over that of biceps femoris within hamstring muscles complex. In conclusion 1) Biceps femoris is the most evaluated muscle, followed by gluteus maximus, vastus lateralis and erector spinae during Deadlift exercises; 2) Erector spinae and quadriceps muscles are more activated than gluteus maximus and biceps femoris muscles within Deadlift exercises; 3) Within the hamstring muscles complex, semitendinosus elicits slightly greater muscle activation than biceps femoris during Deadlift exercises; and 4) A unified criterion upon methodology is necessary in order to report reliable outcomes when using surface electromyography recordings.
Dingwell J.B., Davis B.L., Frazder D.M.
2020-02-04 citations by CoLab: 98 Abstract  
The purpose of this research was to evaluate a newly developed system for assessing and providing feedback of gait symmetry information in real time to subjects walking on a motorised treadmill (the CCF Treadmill). The advantages of the system are that it allows the rapid collection and comparison of temporal and kinetic parameters of gait for multiple successive strides, at a constant known speed, without forcing subjects to target their footsteps. Gait asymmetries of six normal (mean age 42.7 years) and six unilateral transtibial amputee subjects (mean age 41.7, and average 6.0 years using a prosthesis) were quantified. The amputee group was the reevaluated after receiving five minutes of training with each of three different types of real-time visual feedback (RTVF). Asymmetries in the measured parameters before feedback were 4.6 times greater in the amputee population than in the normal group, and were consistent with the finding of previous authors. Significant decreases in gait asymmetry were demonstrated for all forms of feedback after amputees received feedback training. Results, however, indicated that gait asymmetries for different variables are not necessarily related, and that more work needs to be done to identify those variables for which attaining a more symmetrical gait pattern is most beneficial. Further work also needs to be done to determine the long term effects of such RTVF training. The CCF Treadmill and RTVF were shown to be potentially useful tools both for defining rehabilitation targets and for quantifying patients' progress towards those goals.
Kim A., Schweighofer N., Finley J.M.
2019-09-14 citations by CoLab: 45 PDF Abstract  
Virtual reality (VR) is a potentially promising tool for enhancing real-world locomotion in individuals with mobility impairment through its ability to provide personalized performance feedback and simulate real-world challenges. However, it is unknown whether novel locomotor skills learned in VR show sustained transfer to the real world. Here, as an initial step towards developing a VR-based clinical intervention, we study how young adults learn and transfer a treadmill-based virtual obstacle negotiation skill to the real world. On Day 1, participants crossed virtual obstacles while walking on a treadmill, with the instruction to minimize foot clearance during obstacle crossing. Gradual changes in performance during training were fit via non-linear mixed effect models. Immediate transfer was measured by foot clearance during physical obstacle crossing while walking over-ground. Retention of the obstacle negotiation skill in VR and retention of over-ground transfer were assessed after 24 h. On Day 1, participants systematically reduced foot clearance throughout practice by an average of 5 cm (SD 4 cm) and transferred 3 cm (SD 1 cm) of this reduction to over-ground walking. The acquired reduction in foot clearance was also retained after 24 h in VR and over-ground. There was only a small, but significant 0.8 cm increase in foot clearance in VR and no significant increase in clearance over-ground on Day 2. Moreover, individual differences in final performance at the end of practice on Day 1 predicted retention both in VR and in the real environment. Overall, our results support the use of VR for locomotor training as skills learned in a virtual environment readily transfer to real-world locomotion. Future work is needed to determine if VR-based locomotor training leads to sustained transfer in clinical populations with mobility impairments, such as individuals with Parkinson’s disease and stroke survivors.
Browne M.G., Franz J.R.
Gait and Posture scimago Q1 wos Q2
2019-06-01 citations by CoLab: 44 Abstract  
Background Compared to young adults, older adults walk slower, with shorter strides, and with a characteristic decrease in ankle power output. Seemingly in response, older adults rely more than young on hip power output, a phenomenon known as a distal-to-proximal redistribution. Nevertheless, older adults can increase ankle power to walk faster or uphill, revealing a translationally important gap in our understanding. Research question Our purpose was to implement a novel ankle power biofeedback paradigm to encourage favorable biomechanical adaptations (i.e. reverse the distal-redistribution) during habitual speed walking in older adults. Methods 10 healthy older adults walked at their preferred speeds while real-time visual biofeedback provided target increases and decreases of 10 and 20% different from preferred ankle power. We evaluated the effect of changes in ankle power on joint kinetics, kinematics, and propulsive ground reaction forces. Pre and post overground walking speed assessments evaluated the effect of increased ankle power recall on walking speed. Results Biofeedback systematically elicited changes in ankle power; increasing and decreasing ankle power by 14% and 17% when targeting ±20% different from preferred, respectively. We observed a significant negative correlation between ankle power and hip extensor work. Older adults relied more heavily on changes in ankle angular velocity than ankle moment to modulate ankle power. Lastly, older adults walked almost 11% faster when recalling increased ankle power overground. Significance Older adults are capable of increasing ankle power through targeted ankle power biofeedback – effects that are accompanied by diminished hip power output and attenuation of the distal-to-proximal redistribution. The associated increase in preferred walking speed during recall suggests a functional benefit to increased ankle power output via transfer to overground walking. Further, our mechanistic insights allude to translational success using ankle angular velocity as a surrogate to modulate ankle power through biofeedback.
CHAN M., SIGWARD S.M.
2019-02-21 citations by CoLab: 23 Abstract  
Strategies that underload the surgical limb after anterior cruciate ligament reconstruction (ACLr) are observed in submaximal tasks. It is not known what underlies these strategies in early rehabilitation. The purpose of this study was to determine if underloading can be attributed to the inability to meet task demands with and without attention to limb loading or learned behavior.Twenty individuals (110.6 [18.1] days) post-ACLr and 20 healthy individuals (CTRL) participated in this study. Participants performed standing, sit-to-stand, and squat tasks under natural, instructed, and feedback conditions. Limb-loading symmetry was calculated as the between-limb ratio of vertical ground reaction force impulse during each task. General Linear Model repeated-measures analysis, 2 (group) × 3 (condition), determined the effects of group and condition on limb-loading symmetry for each task.Significant interactions were observed for each task (all P < 0.001). Compared with CTRL, ACLr exhibited greater asymmetry during natural (deficits: standing, 10%, P = 0.001; sit-to-stand, 25%, P < 0.001; squat, 15%, P < 0.001) and instructed (deficits: sit-to-stand, 13%, P = 0.001; squat, 8%, P = 0.04), but not feedback conditions. The CTRL maintained symmetry across conditions and tasks. Anterior cruciate ligament reconstruction exhibited greater asymmetry in natural compared with instructed (deficits: standing, 11%, P < 0.001; sit-to-stand, 14%, P < 0.001; squat, 8%, P = 0.001) and feedback (deficits: standing, 10%, P = 0.001; sit-to-stand, 21%, P < 0.001; squat, 15%, P < 0.001) conditions.The presence of loading asymmetries in natural but not feedback conditions indicates that individuals 3 months post-ACLr shift loading away from surgical limb despite the ability to meet task demands which may be suggestive of nonuse behavior. Even when instructed to load symmetrically, individuals continued to exhibit some degree of asymmetry.
Luc-Harkey B.A., Franz J.R., Blackburn J.T., Padua D.A., Hackney A.C., Pietrosimone B.
Journal of Biomechanics scimago Q1 wos Q3
2018-07-01 citations by CoLab: 42 Abstract  
Individuals with anterior cruciate ligament reconstruction (ACLR) often exhibit a "stiffened knee strategy" or an excessively extended knee during gait, characterized by lesser knee flexion excursion and peak internal knee extension moment (KEM). The purpose of this study was to determine the effect of real-time biofeedback (RTBF) cuing an acute change in peak vertical ground reaction force (vGRF) during the first 50% of the stance phase of walking gait on: (1) root mean square error (RMSE) between actual vGRF and RTBF target vGRF; (2) perceived difficulty; and (3) knee biomechanics. Acquisition and short-term recall of these outcomes were evaluated. Thirty individuals with unilateral ACLR completed 4 separate walking sessions on a force-measuring treadmill that consisted of a control (no RTBF) and 3 experimental loading conditions using RTBF including: (1) 5% vGRF increase (high-loading), (2) 5% vGRF decrease (low-loading) and (3) symmetric vGRF between limbs. Bilateral biomechanical outcomes were analyzed during the first 50% of the stance phase, and included KEM, knee flexion excursion, peak vGRF, and instantaneous vGRF loading rate (vGRF-LR) for each loading condition. Peak vGRF significantly increased and decreased during high-loading and low-loading, respectively compared to control loading. Instantaneous vGRF-LR, peak KEM and knee flexion excursion significantly increased during the high-loading condition compared to low-loading. Perceived difficultly and RMSE were lower during the symmetrical loading condition compared to the low-loading condition. Cuing an increase in peak vGRF may be beneficial for increasing KEM, knee flexion excursion, peak vGRF, and vGRF-LR in individuals with ACLR. Clinical Trials Number: NCT03035994.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?