Open Access
Open access
том 17 издание 8 страницы 2749

Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms

Viet Ha Nhu 1, 2
Ataollah Shirzadi 3
Himan Shahabi 4, 5
John J. Clague 8
Abolfazl Jaafari 9
Wei Chen 10, 11
Shaghayegh Miraki 12
Dou Jie 13
Chinh Luu 14
Krzysztof Górski 15
Binh V. Pham 16
Huu Duy Nguyen 17
Baharin Bin Ahmad 18
6
 
Virtusa Corporation, 10 Marshall Street, Irvington, NJ 07111, USA
11
 
Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China
12
 
Department of Watershed Sciences Engineering, Faculty of Natural Resources, University of Agricultural Science and Natural Resources of Sari, Mazandaran 48181-68984, Iran
14
 
Faculty of Hydraulic Engineering, National University of Civil Engineering, Hanoi 112000, Vietnam
Тип публикацииJournal Article
Дата публикации2020-04-16
scimago Q2
SJR0.919
CiteScore8.5
Impact factor
ISSN16617827, 16604601
Health, Toxicology and Mutagenesis
Public Health, Environmental and Occupational Health
Краткое описание

Shallow landslides damage buildings and other infrastructure, disrupt agriculture practices, and can cause social upheaval and loss of life. As a result, many scientists study the phenomenon, and some of them have focused on producing landslide susceptibility maps that can be used by land-use managers to reduce injury and damage. This paper contributes to this effort by comparing the power and effectiveness of five machine learning, benchmark algorithms—Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine—in creating a reliable shallow landslide susceptibility map for Bijar City in Kurdistan province, Iran. Twenty conditioning factors were applied to 111 shallow landslides and tested using the One-R attribute evaluation (ORAE) technique for modeling and validation processes. The performance of the models was assessed by statistical-based indexes including sensitivity, specificity, accuracy, mean absolute error (MAE), root mean square error (RMSE), and area under the receiver operatic characteristic curve (AUC). Results indicate that all the five machine learning models performed well for shallow landslide susceptibility assessment, but the Logistic Model Tree model (AUC = 0.932) had the highest goodness-of-fit and prediction accuracy, followed by the Logistic Regression (AUC = 0.932), Naïve Bayes Tree (AUC = 0.864), ANN (AUC = 0.860), and Support Vector Machine (AUC = 0.834) models. Therefore, we recommend the use of the Logistic Model Tree model in shallow landslide mapping programs in semi-arid regions to help decision makers, planners, land-use managers, and government agencies mitigate the hazard and risk.

Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
Remote Sensing
12 публикаций, 5.58%
Geocarto International
10 публикаций, 4.65%
Catena
8 публикаций, 3.72%
Arabian Journal of Geosciences
6 публикаций, 2.79%
Sustainability
5 публикаций, 2.33%
Environmental Earth Sciences
5 публикаций, 2.33%
International Journal of Environmental Research and Public Health
4 публикации, 1.86%
Applied Sciences (Switzerland)
4 публикации, 1.86%
ISPRS International Journal of Geo-Information
4 публикации, 1.86%
Frontiers in Environmental Science
4 публикации, 1.86%
Natural Hazards
4 публикации, 1.86%
Disaster Risk Reduction
4 публикации, 1.86%
Frontiers in Earth Science
3 публикации, 1.4%
Environmental Science and Pollution Research
3 публикации, 1.4%
Geomatics, Natural Hazards and Risk
3 публикации, 1.4%
Communications in Computer and Information Science
3 публикации, 1.4%
Bulletin of Engineering Geology and the Environment
3 публикации, 1.4%
Medicine (United States)
2 публикации, 0.93%
Forests
2 публикации, 0.93%
Journal of Mountain Science
2 публикации, 0.93%
Water Resources Management
2 публикации, 0.93%
BMC Medical Informatics and Decision Making
2 публикации, 0.93%
Stochastic Environmental Research and Risk Assessment
2 публикации, 0.93%
Asian Journal of Civil Engineering
2 публикации, 0.93%
Ecological Indicators
2 публикации, 0.93%
Geosciences (Switzerland)
2 публикации, 0.93%
Earth Science Informatics
2 публикации, 0.93%
Frontiers in Marine Science
2 публикации, 0.93%
Journal of Electrical and Computer Engineering
1 публикация, 0.47%
2
4
6
8
10
12

Издатели

10
20
30
40
50
60
70
Springer Nature
69 публикаций, 32.09%
MDPI
43 публикации, 20%
Elsevier
35 публикаций, 16.28%
Taylor & Francis
19 публикаций, 8.84%
Frontiers Media S.A.
11 публикаций, 5.12%
Institute of Electrical and Electronics Engineers (IEEE)
10 публикаций, 4.65%
Hindawi Limited
4 публикации, 1.86%
JMIR Publications
2 публикации, 0.93%
Ovid Technologies (Wolters Kluwer Health)
2 публикации, 0.93%
Wiley
2 публикации, 0.93%
Association for Computing Machinery (ACM)
1 публикация, 0.47%
American Society of Civil Engineers (ASCE)
1 публикация, 0.47%
Copernicus
1 публикация, 0.47%
King Saud University
1 публикация, 0.47%
Scientific Research Publishing
1 публикация, 0.47%
Japan Prosthodontic Society
1 публикация, 0.47%
American Institute of Mathematical Sciences (AIMS)
1 публикация, 0.47%
Hans Publishers
1 публикация, 0.47%
IWA Publishing
1 публикация, 0.47%
Emerald
1 публикация, 0.47%
American Chemical Society (ACS)
1 публикация, 0.47%
SAGE
1 публикация, 0.47%
AIP Publishing
1 публикация, 0.47%
Bentham Science Publishers Ltd.
1 публикация, 0.47%
10
20
30
40
50
60
70
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
215
Поделиться
Цитировать
ГОСТ |
Цитировать
Nhu V. H. et al. Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms // International Journal of Environmental Research and Public Health. 2020. Vol. 17. No. 8. p. 2749.
ГОСТ со всеми авторами (до 50) Скопировать
Nhu V. H., Shirzadi A., Shahabi H., Singh S., Al-Ansari N., Clague J. J., Jaafari A., Chen W., Miraki S., Jie D., Luu C., Górski K., Pham B. V., Nguyen H. D., Ahmad B. B. Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms // International Journal of Environmental Research and Public Health. 2020. Vol. 17. No. 8. p. 2749.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/ijerph17082749
UR - https://www.mdpi.com/1660-4601/17/8/2749
TI - Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms
T2 - International Journal of Environmental Research and Public Health
AU - Nhu, Viet Ha
AU - Shirzadi, Ataollah
AU - Shahabi, Himan
AU - Singh, Sushant
AU - Al-Ansari, Nadhir
AU - Clague, John J.
AU - Jaafari, Abolfazl
AU - Chen, Wei
AU - Miraki, Shaghayegh
AU - Jie, Dou
AU - Luu, Chinh
AU - Górski, Krzysztof
AU - Pham, Binh V.
AU - Nguyen, Huu Duy
AU - Ahmad, Baharin Bin
PY - 2020
DA - 2020/04/16
PB - MDPI
SP - 2749
IS - 8
VL - 17
PMID - 32316191
SN - 1661-7827
SN - 1660-4601
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Nhu,
author = {Viet Ha Nhu and Ataollah Shirzadi and Himan Shahabi and Sushant Singh and Nadhir Al-Ansari and John J. Clague and Abolfazl Jaafari and Wei Chen and Shaghayegh Miraki and Dou Jie and Chinh Luu and Krzysztof Górski and Binh V. Pham and Huu Duy Nguyen and Baharin Bin Ahmad},
title = {Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms},
journal = {International Journal of Environmental Research and Public Health},
year = {2020},
volume = {17},
publisher = {MDPI},
month = {apr},
url = {https://www.mdpi.com/1660-4601/17/8/2749},
number = {8},
pages = {2749},
doi = {10.3390/ijerph17082749}
}
MLA
Цитировать
Nhu, Viet Ha, et al. “Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms.” International Journal of Environmental Research and Public Health, vol. 17, no. 8, Apr. 2020, p. 2749. https://www.mdpi.com/1660-4601/17/8/2749.