Open Access
Open access
том 26 издание 19 страницы 5779

Density of Deep Eutectic Solvents: The Path Forward Cheminformatics-Driven Reliable Predictions for Mixtures

Тип публикацииJournal Article
Дата публикации2021-09-24
scimago Q1
wos Q2
БС1
SJR0.865
CiteScore8.6
Impact factor4.6
ISSN14203049
Organic Chemistry
Drug Discovery
Physical and Theoretical Chemistry
Pharmaceutical Science
Molecular Medicine
Analytical Chemistry
Chemistry (miscellaneous)
Краткое описание

Deep eutectic solvents (DES) are often regarded as greener sustainable alternative solvents and are currently employed in many industrial applications on a large scale. Bearing in mind the industrial importance of DES—and because the vast majority of DES has yet to be synthesized—the development of cheminformatic models and tools efficiently profiling their density becomes essential. In this work, after rigorous validation, quantitative structure-property relationship (QSPR) models were proposed for use in estimating the density of a wide variety of DES. These models were based on a modelling dataset previously employed for constructing thermodynamic models for the same endpoint. The best QSPR models were robust and sound, performing well on an external validation set (set up with recently reported experimental density data of DES). Furthermore, the results revealed structural features that could play crucial roles in ruling DES density. Then, intelligent consensus prediction was employed to develop a consensus model with improved predictive accuracy. All models were derived using publicly available tools to facilitate easy reproducibility of the proposed methodology. Future work may involve setting up reliable, interpretable cheminformatic models for other thermodynamic properties of DES and guiding the design of these solvents for applications.

Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
Journal of Molecular Liquids
10 публикаций, 28.57%
Molecules
2 публикации, 5.71%
ACS Omega
2 публикации, 5.71%
Fluid Phase Equilibria
2 публикации, 5.71%
Separation and Purification Technology
2 публикации, 5.71%
Chemical Engineering Science
2 публикации, 5.71%
International Journal of Molecular Sciences
1 публикация, 2.86%
Current Pollution Reports
1 публикация, 2.86%
Fuel
1 публикация, 2.86%
Current Opinion in Toxicology
1 публикация, 2.86%
Journal of CO2 Utilization
1 публикация, 2.86%
Physical Chemistry Chemical Physics
1 публикация, 2.86%
Journal of Chemical Information and Modeling
1 публикация, 2.86%
Journal of Physical Chemistry B
1 публикация, 2.86%
Green Chemistry
1 публикация, 2.86%
RSC Advances
1 публикация, 2.86%
Engineering
1 публикация, 2.86%
Industrial & Engineering Chemistry Research
1 публикация, 2.86%
Challenges and Advances in Computational Chemistry and Physics
1 публикация, 2.86%
2
4
6
8
10

Издатели

5
10
15
20
25
Elsevier
22 публикации, 62.86%
American Chemical Society (ACS)
5 публикаций, 14.29%
MDPI
3 публикации, 8.57%
Royal Society of Chemistry (RSC)
3 публикации, 8.57%
Springer Nature
2 публикации, 5.71%
5
10
15
20
25
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
35
Поделиться
Цитировать
ГОСТ |
Цитировать
Halder A. K. et al. Density of Deep Eutectic Solvents: The Path Forward Cheminformatics-Driven Reliable Predictions for Mixtures // Molecules. 2021. Vol. 26. No. 19. p. 5779.
ГОСТ со всеми авторами (до 50) Скопировать
Halder A. K., Haghbakhsh R., Voroshylova I. V., Duarte A. R. C., DS Cordeiro M. N. Density of Deep Eutectic Solvents: The Path Forward Cheminformatics-Driven Reliable Predictions for Mixtures // Molecules. 2021. Vol. 26. No. 19. p. 5779.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/molecules26195779
UR - https://doi.org/10.3390/molecules26195779
TI - Density of Deep Eutectic Solvents: The Path Forward Cheminformatics-Driven Reliable Predictions for Mixtures
T2 - Molecules
AU - Halder, Amit Kumar
AU - Haghbakhsh, Reza
AU - Voroshylova, Iuliia V.
AU - Duarte, Ana Rita C
AU - DS Cordeiro, M Natália
PY - 2021
DA - 2021/09/24
PB - MDPI
SP - 5779
IS - 19
VL - 26
PMID - 34641322
SN - 1420-3049
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Halder,
author = {Amit Kumar Halder and Reza Haghbakhsh and Iuliia V. Voroshylova and Ana Rita C Duarte and M Natália DS Cordeiro},
title = {Density of Deep Eutectic Solvents: The Path Forward Cheminformatics-Driven Reliable Predictions for Mixtures},
journal = {Molecules},
year = {2021},
volume = {26},
publisher = {MDPI},
month = {sep},
url = {https://doi.org/10.3390/molecules26195779},
number = {19},
pages = {5779},
doi = {10.3390/molecules26195779}
}
MLA
Цитировать
Halder, Amit Kumar, et al. “Density of Deep Eutectic Solvents: The Path Forward Cheminformatics-Driven Reliable Predictions for Mixtures.” Molecules, vol. 26, no. 19, Sep. 2021, p. 5779. https://doi.org/10.3390/molecules26195779.