Open Access
Open access
Sensors, volume 20, issue 22, pages 6441

Edge-Computing Architectures for Internet of Things Applications: A Survey

Publication typeJournal Article
Publication date2020-11-11
Journal: Sensors
scimago Q1
SJR0.786
CiteScore7.3
Impact factor3.4
ISSN14243210, 14248220
PubMed ID:  33187267
Biochemistry
Analytical Chemistry
Atomic and Molecular Physics, and Optics
Electrical and Electronic Engineering
Instrumentation
Abstract

The rapid growth of the Internet of Things (IoT) applications and their interference with our daily life tasks have led to a large number of IoT devices and enormous sizes of IoT-generated data. The resources of IoT devices are limited; therefore, the processing and storing IoT data in these devices are inefficient. Traditional cloud-computing resources are used to partially handle some of the IoT resource-limitation issues; however, using the resources in cloud centers leads to other issues, such as latency in time-critical IoT applications. Therefore, edge-cloud-computing technology has recently evolved. This technology allows for data processing and storage at the edge of the network. This paper studies, in-depth, edge-computing architectures for IoT (ECAs-IoT), and then classifies them according to different factors such as data placement, orchestration services, security, and big data. Besides, the paper studies each architecture in depth and compares them according to various features. Additionally, ECAs-IoT is mapped according to two existing IoT layered models, which helps in identifying the capabilities, features, and gaps of every architecture. Moreover, the paper presents the most important limitations of existing ECAs-IoT and recommends solutions to them. Furthermore, this survey details the IoT applications in the edge-computing domain. Lastly, the paper recommends four different scenarios for using ECAs-IoT by IoT applications.

Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
16
2
4
6
8
10
12
14
16

Publishers

5
10
15
20
25
30
35
40
5
10
15
20
25
30
35
40
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?