Open Access
Open access
том 14 издание 4 страницы 1995

Intelligent Data Analysis for Infection Spread Prediction

Тип публикацииJournal Article
Дата публикации2022-02-10
scimago Q1
wos Q2
БС1
SJR0.688
CiteScore7.7
Impact factor3.3
ISSN20711050
Renewable Energy, Sustainability and the Environment
Geography, Planning and Development
Management, Monitoring, Policy and Law
Краткое описание

Intelligent data analysis based on artificial intelligence and Big Data tools is widely used by the scientific community to overcome global challenges. One of these challenges is the worldwide coronavirus pandemic, which began in early 2020. Data science not only provides an opportunity to assess the impact caused by a pandemic, but also to predict the infection spread. In addition, the model expansion by economic, social, and infrastructural factors makes it possible to predict changes in all spheres of human activity in competitive epidemiological conditions. This article is devoted to the use of anonymized and personal data in predicting the coronavirus infection spread. The basic “Susceptible–Exposed–Infected–Recovered” model was extended by including a set of demographic, administrative, and social factors. The developed model is more predictive and applicable in assessing future pandemic impact. After a series of simulation experiment results, we concluded that personal data use in high-level modeling of the infection spread is excessive.

Найдено 
Найдено 

Топ-30

Журналы

1
Lecture Notes in Networks and Systems
1 публикация, 50%
1

Издатели

1
Springer Nature
1 публикация, 50%
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 50%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Поделиться
Цитировать
ГОСТ |
Цитировать
Borovkov A. I., Bolsunovskaya M. V., Gintciak A. Intelligent Data Analysis for Infection Spread Prediction // Sustainability. 2022. Vol. 14. No. 4. p. 1995.
ГОСТ со всеми авторами (до 50) Скопировать
Borovkov A. I., Bolsunovskaya M. V., Gintciak A. Intelligent Data Analysis for Infection Spread Prediction // Sustainability. 2022. Vol. 14. No. 4. p. 1995.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/su14041995
UR - https://doi.org/10.3390/su14041995
TI - Intelligent Data Analysis for Infection Spread Prediction
T2 - Sustainability
AU - Borovkov, Alexey I
AU - Bolsunovskaya, Marina V
AU - Gintciak, Aleksey
PY - 2022
DA - 2022/02/10
PB - MDPI
SP - 1995
IS - 4
VL - 14
SN - 2071-1050
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Borovkov,
author = {Alexey I Borovkov and Marina V Bolsunovskaya and Aleksey Gintciak},
title = {Intelligent Data Analysis for Infection Spread Prediction},
journal = {Sustainability},
year = {2022},
volume = {14},
publisher = {MDPI},
month = {feb},
url = {https://doi.org/10.3390/su14041995},
number = {4},
pages = {1995},
doi = {10.3390/su14041995}
}
MLA
Цитировать
Borovkov, Alexey I., et al. “Intelligent Data Analysis for Infection Spread Prediction.” Sustainability, vol. 14, no. 4, Feb. 2022, p. 1995. https://doi.org/10.3390/su14041995.