Open Access
Open access

Short-Term River Flood Forecasting Using Composite Models and Automated Machine Learning: The Case Study of Lena River

Тип документаJournal Article
Дата публикации2021-12-07
Название журналаWater (Switzerland)
ИздательMultidisciplinary Digital Publishing Institute (MDPI)
Квартиль по SCImagoQ1
Квартиль по Web of ScienceQ2
Импакт-фактор 20213.53
ISSN20734441
Biochemistry
Water Science and Technology
Aquatic Science
Geography, Planning and Development
Краткое описание
The paper presents a hybrid approach for short-term river flood forecasting. It is based on multi-modal data fusion from different sources (weather stations, water height sensors, remote sensing data). To improve the forecasting efficiency, the machine learning methods and the Snowmelt-Runoff physical model are combined in a composite modeling pipeline using automated machine learning techniques. The novelty of the study is based on the application of automated machine learning to identify the individual blocks of a composite pipeline without involving an expert. It makes it possible to adapt the approach to various river basins and different types of floods. Lena River basin was used as a case study since its modeling during spring high water is complicated by the high probability of ice-jam flooding events. Experimental comparison with the existing methods confirms that the proposed approach reduces the error at each analyzed level gauging station. The value of Nash–Sutcliffe model efficiency coefficient for the ten stations chosen for comparison is 0.80. The other approaches based on statistical and physical models could not surpass the threshold of 0.74. Validation for a high-water period also confirms that a composite pipeline designed using automated machine learning is much more efficient than stand-alone models.
Пристатейные ссылки: 69
Цитируется в публикациях: 2
Automated evolutionary approach for the design of composite machine learning pipelines
Nikitin N.O., Vychuzhanin P., Sarafanov M., Polonskaia I.S., Revin I., Barabanova I.V., Maximov G., Kalyuzhnaya A.V., Boukhanovsky A.
Q1 Future Generation Computer Systems 2022 цитирований: 6
From local to regional compound flood mapping with deep learning and data fusion techniques
Muñoz D.F., Muñoz P., Moftakhari H., Moradkhani H.
Q1 Science of the Total Environment 2021 цитирований: 13
Do ARMA Models Provide Better Gap Filling in Time Series of Soil Temperature and Soil Moisture? The Case of Arable Land in the Kulunda Steppe, Russia
Ponkina E., Illiger P., Krotova O., Bondarovich A.
Q2 Land 2021 цитирований: 2
Open Access
Open access
Operational and emerging capabilities for surface water flood forecasting
Speight L.J., Cranston M.D., White C.J., Kelly L.
Q1 Wiley Interdisciplinary Reviews Water 2021 цитирований: 11
Application of auto-regressive (AR) analysis to improve short-term prediction of water levels in the Yangtze estuary
Chen Y., Gan M., Pan S., Pan H., Zhu X., Tao Z.
Q1 Journal of Hydrology 2020 цитирований: 7
Signature-based multi-modelling and multi-objective calibration of hydrologic models: Application in flood forecasting for Canadian Prairies
Sahraei S., Asadzadeh M., Unduche F.
Q1 Journal of Hydrology 2020 цитирований: 13
Hybrid machine learning hydrological model for flood forecast purpose
Kan G., Liang K., Yu H., Sun B., Ding L., Li J., He X., Shen C.
Q3 Open Geosciences 2020 цитирований: 8
Open Access
Open access
Forecasting the Short-Term Metro Ridership With Seasonal and Trend Decomposition Using Loess and LSTM Neural Networks
Chen D., Zhang J., Jiang S.
Q1 IEEE Access 2020 цитирований: 26
Open Access
Open access
Ensemble flood forecasting: Current status and future opportunities
Wu W., Emerton R., Duan Q., Wood A.W., Wetterhall F., Robertson D.E.
Q1 Wiley Interdisciplinary Reviews Water 2020 цитирований: 26
Flood prediction based on weather parameters using deep learning
Sankaranarayanan S., Prabhakar M., Satish S., Jain P., Ramprasad A., Krishnan A.
Q2 Journal of Water and Climate Change 2019 цитирований: 26
An extreme flood caused by a heavy snowfall over the Indigirka River basin in Northeastern Siberia
Tei S., Morozumi T., Nagai S., Takano S., Sugimoto A., Shingubara R., Fan R., Fedorov A., Gavrilyeva T., Tananaev N., Maximov T.
Q1 Hydrological Processes 2019 цитирований: 19
Numerical modeling and forecast of channel changes on the river Lena near city Yakutsk
Golovlyov P., Kornilova E., Krylenko I., Belikov V., Zavadskii A., Fingert E., Borisova N., Morozova E.
Q3 Proceedings of the International Association of Hydrological Sciences 2019 цитирований: 2
Open Access
Open access
Causative classification of river flood events
Tarasova L., Merz R., Kiss A., Basso S., Blöschl G., Merz B., Viglione A., Plötner S., Guse B., Schumann A., Fischer S., Ahrens B., Anwar F., Bárdossy A., Bühler P., et. al.
Q1 Wiley Interdisciplinary Reviews Water 2019 цитирований: 44
Introducing Gradient Boosting as a universal gap filling tool for meteorological time series
Körner P., Kronenberg R., Genzel S., Bernhofer C.
Q2 Meteorologische Zeitschrift 2018 цитирований: 8
Open Access
Open access
Novel Hybrid Evolutionary Algorithms for Spatial Prediction of Floods
Bui D.T., Panahi M., Shahabi H., Singh V.P., Shirzadi A., Chapi K., Khosravi K., Chen W., Panahi S., Li S., Ahmad B.B.
Q1 Scientific Reports 2018 цитирований: 86
Open Access
Open access
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Sarafanov M. и др. Short-Term River Flood Forecasting Using Composite Models and Automated Machine Learning: The Case Study of Lena River // Water. 2021. Т. 13. № 24. С. 3482.
RIS |
Цитировать

TY - JOUR

DO - 10.3390/w13243482

UR - http://dx.doi.org/10.3390/w13243482

TI - Short-Term River Flood Forecasting Using Composite Models and Automated Machine Learning: The Case Study of Lena River

T2 - Water

AU - Sarafanov, Mikhail

AU - Borisova, Yulia

AU - Maslyaev, Mikhail

AU - Revin, Ilia

AU - Maximov, Gleb

AU - Nikitin, Nikolay O.

PY - 2021

DA - 2021/12/07

PB - MDPI AG

SP - 3482

IS - 24

VL - 13

SN - 2073-4441

ER -

BibTex |
Цитировать

@article{Sarafanov_2021,

doi = {10.3390/w13243482},

url = {https://doi.org/10.3390%2Fw13243482},

year = 2021,

month = {dec},

publisher = {{MDPI} {AG}},

volume = {13},

number = {24},

pages = {3482},

author = {Mikhail Sarafanov and Yulia Borisova and Mikhail Maslyaev and Ilia Revin and Gleb Maximov and Nikolay O. Nikitin},

title = {Short-Term River Flood Forecasting Using Composite Models and Automated Machine Learning: The Case Study of Lena River},

journal = {Water}

}

MLA
Цитировать
Sarafanov, Mikhail, et al. “Short-Term River Flood Forecasting Using Composite Models and Automated Machine Learning: The Case Study of Lena River.” Water, vol. 13, no. 24, Dec. 2021, p. 3482. Crossref, https://doi.org/10.3390/w13243482.