Open Access
Open access
volume 7 pages 1397-1403

Adiabatic superconducting cells for ultra-low-power artificial neural networks

Publication typeJournal Article
Publication date2016-10-05
scimago Q2
wos Q3
SJR0.435
CiteScore4.8
Impact factor2.7
ISSN21904286
PubMed ID:  27826513
General Physics and Astronomy
General Materials Science
Electrical and Electronic Engineering
Abstract

We propose the concept of using superconducting quantum interferometers for the implementation of neural network algorithms with extremely low power dissipation. These adiabatic elements are Josephson cells with sigmoid- and Gaussian-like activation functions. We optimize their parameters for application in three-layer perceptron and radial basis function networks.

Found 
Found 

Top-30

Journals

1
2
3
4
5
6
7
8
Beilstein Journal of Nanotechnology
8 publications, 18.18%
Journal of Experimental and Theoretical Physics
3 publications, 6.82%
Journal of Applied Physics
3 publications, 6.82%
IEEE Transactions on Applied Superconductivity
3 publications, 6.82%
Applied Physics Letters
3 publications, 6.82%
JETP Letters
3 publications, 6.82%
Symmetry
2 publications, 4.55%
Superconductor Science and Technology
2 publications, 4.55%
Low Temperature Physics
2 publications, 4.55%
Nanomaterials
2 publications, 4.55%
Communications in Computer and Information Science
2 publications, 4.55%
Письма в Журнал экспериментальной и теоретической физики
2 publications, 4.55%
Nanobiotechnology Reports
1 publication, 2.27%
Computational Mathematics and Mathematical Physics
1 publication, 2.27%
Journal of Physics: Conference Series
1 publication, 2.27%
Physics of the Solid State
1 publication, 2.27%
AIP Conference Proceedings
1 publication, 2.27%
Physical Review B
1 publication, 2.27%
Physical Review Applied
1 publication, 2.27%
Journal of Communications Technology and Electronics
1 publication, 2.27%
Журнал Экспериментальной и Теоретической Физики
1 publication, 2.27%
1
2
3
4
5
6
7
8

Publishers

2
4
6
8
10
12
Pleiades Publishing
11 publications, 25%
AIP Publishing
9 publications, 20.45%
Beilstein-Institut
8 publications, 18.18%
MDPI
4 publications, 9.09%
Institute of Electrical and Electronics Engineers (IEEE)
3 publications, 6.82%
IOP Publishing
3 publications, 6.82%
American Physical Society (APS)
2 publications, 4.55%
Springer Nature
2 publications, 4.55%
Akademizdatcenter Nauka
1 publication, 2.27%
The Russian Academy of Sciences
1 publication, 2.27%
2
4
6
8
10
12
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
44
Share
Cite this
GOST |
Cite this
GOST Copy
Schegolev A. E. et al. Adiabatic superconducting cells for ultra-low-power artificial neural networks // Beilstein Journal of Nanotechnology. 2016. Vol. 7. pp. 1397-1403.
GOST all authors (up to 50) Copy
Schegolev A. E., Tereshonok M. Adiabatic superconducting cells for ultra-low-power artificial neural networks // Beilstein Journal of Nanotechnology. 2016. Vol. 7. pp. 1397-1403.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.3762/bjnano.7.130
UR - https://doi.org/10.3762/bjnano.7.130
TI - Adiabatic superconducting cells for ultra-low-power artificial neural networks
T2 - Beilstein Journal of Nanotechnology
AU - Schegolev, Andrey E.
AU - Tereshonok, M.V.
PY - 2016
DA - 2016/10/05
PB - Beilstein-Institut
SP - 1397-1403
VL - 7
PMID - 27826513
SN - 2190-4286
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2016_Schegolev,
author = {Andrey E. Schegolev and M.V. Tereshonok},
title = {Adiabatic superconducting cells for ultra-low-power artificial neural networks},
journal = {Beilstein Journal of Nanotechnology},
year = {2016},
volume = {7},
publisher = {Beilstein-Institut},
month = {oct},
url = {https://doi.org/10.3762/bjnano.7.130},
pages = {1397--1403},
doi = {10.3762/bjnano.7.130}
}