Mohanty A., Rahamathunnisa U., Sudhakar K., Sathiyaraj R.
Chapter 2 Age of Computational AI for Autonomous Vehicles Akash Mohanty, Akash Mohanty School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, IndiaSearch for more papers by this authorU. Rahamathunnisa, U. Rahamathunnisa School of Information Technology and Engineering and Technology, Vellore Institute of Technology, Vellore, IndiaSearch for more papers by this authorK. Sudhakar, K. Sudhakar Department of Computer Science and Engineering, Madanapalle Institute of Technology, Madanapalle, Andhra Pradesh, IndiaSearch for more papers by this authorR. Sathiyaraj, R. Sathiyaraj Department of CSE, GITAM School of Technology, GITAM University, Bengaluru, Karnataka, IndiaSearch for more papers by this author Akash Mohanty, Akash Mohanty School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, IndiaSearch for more papers by this authorU. Rahamathunnisa, U. Rahamathunnisa School of Information Technology and Engineering and Technology, Vellore Institute of Technology, Vellore, IndiaSearch for more papers by this authorK. Sudhakar, K. Sudhakar Department of Computer Science and Engineering, Madanapalle Institute of Technology, Madanapalle, Andhra Pradesh, IndiaSearch for more papers by this authorR. Sathiyaraj, R. Sathiyaraj Department of CSE, GITAM School of Technology, GITAM University, Bengaluru, Karnataka, IndiaSearch for more papers by this author Book Editor(s):Sathiyaraj Rajendran, Sathiyaraj RajendranSearch for more papers by this authorMunish Sabharwal, Munish SabharwalSearch for more papers by this authorYu-Chen Hu, Yu-Chen HuSearch for more papers by this authorRajesh Kumar Dhanaraj, Rajesh Kumar DhanarajSearch for more papers by this authorBalamurugan Balusamy, Balamurugan BalusamySearch for more papers by this author First published: 25 February 2024 https://doi.org/10.1002/9781119847656.ch2 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary Autonomous vehicles have made a great impact on research and industrial growth over the past era. The automobile industry is now being revolutionized by self-driving (or driverless) technology owing to enhanced and advanced autonomous vehicles that make use of cutting-edge computational methods from the fields of machine intelligence and artificial intelligence (AI). Autonomous vehicles are now able to assess their surroundings with high accuracy, make sensible choices in real-time environments, and function legitimately without human intervention and technological advancements in the arena of computationally powerful AI algorithms. The development of autonomous vehicles relies heavily on cutting-edge computational technologies. The chapter aims to review the contemporary methods of computational models over time and presents the computational models in the arena of Machine Learning, its subset Deep Learning and Artificial Intelligence. The chapter initially discusses the role of AI, followed by its autonomy levels. The learning algorithms that perform continual learning are addressed along with advances in intelligent vehicles. We disparagingly evaluate the key issues with computational approaches for driverless complex applications. Integration of computational technologies is presented in brief, addressing how technologies can empower autonomous vehicles. Classification of technological advancements with future directions was given and concluded. References Parekh , D. , Poddar , N. , Rajpurkar , A. , Chahal , M. , Kumar , N. , Joshi , G.P. , Cho , W. , A review on autonomous vehicles: Progress, methods and challenges . Electronics , 11 , 14 , 2162 , 2022 . 10.3390/electronics11142162 Web of Science®Google Scholar Wang , J. , Liu , J. , Kato , N. , Networking and communications in autonomous driving: A survey . IEEE Commun. Surv. & Tutor. , 21 , 2 , 1243 – 1274 , 2018 . 10.1109/COMST.2018.2888904 Web of Science®Google Scholar Sarraf , S. , Current stage of autonomous driving through a quick survey for novice . Am. Acad. Sci. Res. J. Eng. Technol. Sci. , 73 , 1 , 1 – 7 , 2020 . Google Scholar Grigorescu , S. , Trasnea , B. , Cocias , T. , Macesanu , G. , A survey of deep learning techniques for autonomous driving . J. Field Robot. , 37 , 3 , 362 – 386 , 2020 . 10.1002/rob.21918 Web of Science®Google Scholar Sarraf , S. , Desouza , D.D. , Anderson , J.A.E. , Saverino , C. , MCADNNet: Recognizing stages of cognitive impairment through efficient convolutional fMRI and MRI neural network topology models . IEEE Access , 7 , 155584 – 155600 , 2019 . 10.1109/ACCESS.2019.2949577 PubMedWeb of Science®Google Scholar Sarraf , S. and Ostadhashem , M. , Big data application in functional magnetic resonance imaging using apache spark , in: 2016 Future Technologies Conference (FTC) , IEEE , pp. 281 – 284 , 2016 . 10.1109/FTC.2016.7821623 Google Scholar Sarraf , S. , 5G emerging technology and affected industries: Quick survey . Am. Acad. Sci. Res. J. Eng. Technol. Sci. , 55 , 1 , 75 – 82 , 2019 . Google Scholar Deshpande , P. , Road safety and accident prevention in India: A review . Int. J. Adv. Eng. Technol. , 5 , 2 , 64 – 68 , 2014 . Google Scholar Campbell , M. , Egerstedt , M. , How , J.P. , Murray , R.M. , Autonomous driving in urban environments: Approaches, lessons and challenges . Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. , 368 , 1928 , 4649 – 4672 , 2010 . 10.1098/rsta.2010.0110 PubMedWeb of Science®Google Scholar Ziegler , J. , Bender , P. , Schreiber , M. , Lategahn , H. , Strauss , T. , Stiller , C. , Dang , T. et al ., Making bertha drive—An autonomous journey on a historic route . IEEE Intell. Transp. Syst. Mag. , 6 , 2 , 8 – 20 , 2014 . 10.1109/MITS.2014.2306552 Web of Science®Google Scholar Moed , H. , De Bruin , R. , Van Leeuwen , T.H. , New bibliometric tools for the assessment of national research performance: Database description, overview of indicators and first applications . Scientometrics , 33 , 3 , 381 – 422 , 1995 . 10.1007/BF02017338 Web of Science®Google Scholar Ginn , L.K. , Citation analysis of authored articles in library & information science research, 2001-2002 . Mississipi Libraries , 67 , 106 – 109 , 2003 . Google Scholar Helgath , J. , Braun , P. , Pritschet , A. , Schubert , M. , Böhm , P. , Isemann , D. , Investigating the effect of different autonomy levels on user acceptance and user experience in self-driving cars with a VR driving simulator , in: International Conference of Design , User Experience, and Usability , pp. 247 – 256 , Springer , Cham , 2018 . Google Scholar Fagnant , D.J. and Kockelman , K. , Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations . Transp. Res. Part A: Policy Pract. , 77 , 167 – 181 , 2015 . 10.1016/j.tra.2015.04.003 Web of Science®Google Scholar Keqiang , L. , Yifan , D. , Shengbo , L. , Mingyuan , B. , State-of-the-art and technical trends of intelligent and connected vehicles . J. Automotive Saf. Energy , 8 , 01 , 1 , 2017 . Google Scholar Russell S. J. , Artificial intelligence/Stuart J. Russell, Peter Norvig . A modern approach ( Third ed. ), Prentice Hall , 2010 . Google Scholar Borroni-Bird , C. E. , Burns , L.D. , Mitchell , W.J. , Reinventing the automobile: Personal urban mobility for the 21st century . MIT Press , Cambridge, MA, USA , 2010 . Google Scholar Sathiyaraj , R. , Bharathi , A. , Khan , S. , Kiren , T. , Khan , I.U. , Fayaz , M. , A genetic predictive model approach for smart traffic prediction and congestion avoidance for urban transportation . Wirel. Commun. Mob. Comput. , 2022 , 2022 . 10.1155/2022/5938411 Google Scholar Gupta , A. , Anpalagan , A. , Guan , L. , Khwaja , A.S. , Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues . Array , 10 , 100057 , 2021 . 10.1016/j.array.2021.100057 Google Scholar Bachute , M.R. and Subhedar , J.M. , Autonomous driving architectures: insights of machine learning and deep learning algorithms . Mach. Learn. Appl. , 6 , 100164 , 2021 . 10.1016/j.mlwa.2021.100164 Google Scholar Hong , J.W. , Cruz , I. , Williams , D. , AI, you can drive my car: How we evaluate human drivers vs. self-driving cars . Comput. Hum. Behav. , 125 , 106944 , 2021 . 10.1016/j.chb.2021.106944 Google Scholar Sathiyaraj , R. , Bharathi , A. , Balusamy , B. , Advanced intelligent predictive models for urban transportation , Chapman and Hall/CRC , 2022 . 10.1201/9781003217367 Google Scholar Sathiyaraj , R. and Bharathi , A. , An efficient intelligent traffic light control and deviation system for traffic congestion avoidance using multi-agent system . Transport , 35 , 3 , 327 – 335 , 2020 . 10.3846/transport.2019.11115 Web of Science®Google Scholar Naz , N. , Ehsan , M.K. , Amirzada , M.R. , Ali , Md Y , Qureshi , M.A. , Intelligence of autonomous vehicles: A concise revisit . J. Sensors , 2022 , 2022 . 10.1155/2022/2690164 Google Scholar Rajendran , S. and Ayyasamy , B. , Short-term traffic prediction model for urban transportation using structure pattern and regression: An Indian context . SN Appl. Sci. , 2 , 7 , 1 – 11 , 2020 . 10.1007/s42452-020-2946-2 Web of Science®Google Scholar Saha , D. and De , S. , Practical self-driving cars: Survey of the state-of-the-art , Preprints, 2022 , 2022020123, https://doi.org/10.20944/preprints202202.0123.v1 . 10.20944/preprints202202.0123.v1 Google Scholar Bathla , G. , Bhadane , K. , Singh , R.K. , Kumar , R. , Aluvalu , R. , Krishnamurthi , R. , Kumar , A. , Thakur , R.N. , Basheer , S. , Autonomous vehicles and intelligent automation: Applications, challenges, and opportunities . Mobile Inf. Syst. , 2022 , 2022 . Google Scholar Clements , L.M. and Kockelman , K.M. , Economic effects of automated vehicles . Transp. Res. Record , 2606 , 1 , 106 – 114 , 2017 . 10.3141/2606-14 Web of Science®Google Scholar Speranza , M.G. , Trends in transportation and logistics . Eur. J. Oper. Res. , 264 , 3 , 830 – 836 , 2018 . 10.1016/j.ejor.2016.08.032 Web of Science®Google Scholar Lindqvist , U. and Neumann , P.G. , The future of the internet of things . Commun. ACM , 60 , 2 , 26 – 30 , 2017 . 10.1145/3029589 Web of Science®Google Scholar Parkinson , S. , Ward , P. , Wilson , K. , Miller , J. , Cyber threats facing autonomous and connected vehicles: Future challenges . IEEE Trans. Intell. Transp. Syst. , 18 , 11 , 2898 – 2915 , 2017 . 10.1109/TITS.2017.2665968 Web of Science®Google Scholar Złotowski , J. , Yogeeswaran , K. , Bartneck , C. , Can we control it? Autonomous robots threaten human identity, uniqueness, safety, and resources . Int. J. Human-Computer Stud. , 100 , 48 – 54 , 2017 . 10.1016/j.ijhcs.2016.12.008 Web of Science®Google Scholar Ning , H. , Yin , R. , Ullah , A. , Shi , F. , A survey on hybrid human-artificial intelligence for autonomous driving . IEEE Trans. Intell. Transp. Syst. , 23 , 7 , 6011 – 6026 , 2021 . 10.1109/TITS.2021.3074695 Google Scholar Singh , S. and Saini , B.S. , Autonomous cars: Recent developments, challenges, and possible solutions , in: IOP Conference Series: Materials Science and Engineering , vol. 1022 , IOP Publishing , p. 012028 , 2021 . 10.1088/1757-899X/1022/1/012028 Google Scholar Hataba , M. , Sherif , A. , Mahmoud , M. , Abdallah , M. , Alasmary , W. , Security and privacy issues in autonomous vehicles: A layer-based survey . IEEE Open J. Commun. Soc. , 3 , 811 – 829 , 2022 . 10.1109/OJCOMS.2022.3169500 Google Scholar Shuaib , M. , Hassan , N.H. , Usman , S. , Alam , S. , Bhatia , S. , Mashat , A. , Kumar , A. , Kumar , M. , Self-sovereign identity solution for blockchain-based land registry system: A comparison . Mobile Inf. Syst. , 2022 , 2022 . Google Scholar Kumar , A. , de Jesus Pacheco , D.A. , Kaushik , K. , Rodrigues , J.J.P.C. , Futuristic view of the internet of quantum drones: Review, challenges and research agenda . Veh. Commun. , 36 , 100487 , 2022 . 10.1016/j.vehcom.2022.100487 Google Scholar Liu , R. , Yang , K. , Roitberg , A. , Zhang , J. , Peng , K. , Liu , H. , Stiefelhagen , R. , TransKD: Transformer knowledge distillation for efficient semantic segmentation . arXiv preprint arXiv , 2202 , 13393 2022 . Google Scholar Gaihua , W. , Jinheng , L. , Lei , C. , Yingying , D. , Tianlun , Z. , Instance segmentation convolutional neural network based on multi-scale attention mechanism . PLoS One , 17 , 1 , e0263134 , 2022 . 10.1371/journal.pone.0263134 PubMedGoogle Scholar Gao , Y. , Jing , H. , Dianati , M. , Hancock , C.M. , Meng , X. , Performance analysis of robust cooperative positioning based on GPS/UWB integration for connected autonomous vehicles . IEEE Trans. Intell. Veh. , 8 , 1 , 790 – 802 , 2022 . 10.1109/TIV.2022.3144341 Google Scholar Schreiber , M. , Belagiannis , V. , Gläser , C. , Dietmayer , K. , A multi-task recurrent neural network for end-to-end dynamic occupancy grid mapping , in: IEEE Intelligent Vehicles Symposium (IV) , pp. 315 – 322 , IEEE , 2022 . Google Scholar Du , Y. , Chen , J. , Zhao , C. , Liu , C. , Liao , F. , Chan , C.Y. , Comfortable and energy-efficient speed control of autonomous vehicles on rough pavements using deep reinforcement learning . Transp. Res. Part C: Emerg. Technol. , 134 , 103489 , 2022 . 10.1016/j.trc.2021.103489 Web of Science®Google Scholar Chen , L. , He , Y. , Wang , Q. , Pan , W. , Ming , Z. , Joint optimization of sensing, decision-making and motion-controlling for autonomous vehicles: A deep reinforcement learning approach . IEEE Trans. Veh. Technol. , 71 , 5 , 4642 – 4654 , 2022 . 10.1109/TVT.2022.3150793 Google Scholar Fey , V. and Rivin , E. , Innovation on demand: New product development using TRIZ , Cambridge University Press , 2005 . 10.1017/CBO9780511584237 Google Scholar Artificial Intelligence for Autonomous Vehicles ReferencesRelatedInformation
,