Open Access
Open access

Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices

Xu X., Bowen B.J., Gwyther R.E., Freeley M., Grigorenko B., Nemukhin A.V., Eklöf‐Österberg J., Moth‐Poulsen K., Jones D.D., Palma M.
Тип документаJournal Article
Дата публикации2021-01-01
Название журналаAngewandte Chemie - International Edition
ИздательWiley-Blackwell
КвартильQ1
ISSN14337851, 15213773
  • General Chemistry
  • Catalysis
Краткое описание
Abstract The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein‐based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a β‐lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM‐1, an important β‐lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM‐1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein.
Пристатейные ссылки: 73
Цитируется в публикациях: 0
A cephalosporin–chemiluminescent conjugate increases beta-lactamase detection sensitivity by four orders of magnitude
Maity S., Wang X., Das S., He M., Riley L.W., Murthy N.
Q1 Chemical Communications 2020 цитирований: 4
Site-Specific Protein Conjugation onto Fluorescent Single-Walled Carbon Nanotubes
Zubkovs V., Wu S., Rahnamaee S.Y., Schuergers N., Boghossian A.A.
Q1 Chemistry of Materials 2020 цитирований: 6
Quantendefekte als Werkzeugkasten für die kovalente Funktionalisierung von Kohlenstoffnanoröhren mit Peptiden und Proteinen
Mann F.A., Herrmann N., Opazo F., Kruss S.
Q1 Angewandte Chemie 2020 цитирований: 2
Quantum Defects as a Toolbox for the Covalent Functionalization of Carbon Nanotubes with Peptides and Proteins
Mann F.A., Herrmann N., Opazo F., Kruss S.
Q1 Angewandte Chemie - International Edition 2020 цитирований: 17
Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches
Sun W., Shen J., Zhao Z., Arellano N., Rettner C., Tang J., Cao T., Zhou Z., Ta T., Streit J.K., Fagan J.A., Schaus T., Zheng M., Han S., Shih W.M., et. al.
Q1 Science 2020 цитирований: 32
Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics
Liu L., Han J., Xu L., Zhou J., Zhao C., Ding S., Shi H., Xiao M., Ding L., Ma Z., Jin C., Zhang Z., Peng L.
Q1 Science 2020 цитирований: 82
Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor
Seo G., Lee G., Kim M.J., Baek S., Choi M., Ku K.B., Lee C., Jun S., Park D., Kim H.G., Kim S., Lee J., Kim B.T., Park E.C., Kim S.I.
Q1 ACS Nano 2020 цитирований: 544
Site-Specific Protein Photochemical Covalent Attachment to Carbon Nanotube Side Walls and Its Electronic Impact on Single Molecule Function
Thomas S.K., Jamieson W.D., Gwyther R.E., Bowen B.J., Beachey A., Worthy H.L., Macdonald J.E., Elliott M., Castell O.K., Jones D.D.
Q1 Bioconjugate Chemistry 2019 цитирований: 7
Disease Detection with Molecular Biomarkers: From Chemistry of Body Fluids to Nature-Inspired Chemical Sensors
Broza Y.Y., Zhou X., Yuan M., Qu D., Zheng Y., Vishinkin R., Khatib M., Wu W., Haick H.
Q1 Chemical Reviews 2019 цитирований: 80
Positive functional synergy of structurally integrated artificial protein dimers assembled by Click chemistry
Worthy H.L., Auhim H.S., Jamieson W.D., Pope J.R., Wall A., Batchelor R., Johnson R.L., Watkins D.W., Rizkallah P., Castell O.K., Jones D.D.
Q2 Communications Chemistry 2019 цитирований: 9
Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing
Nakatsuka N., Yang K., Abendroth J.M., Cheung K.M., Xu X., Yang H., Zhao C., Zhu B., Rim Y.S., Yang Y., Weiss P.S., Stojanović M.N., Andrews A.M.
Q1 Science 2018 цитирований: 216
Biosensor response from target molecules with inhomogeneous charge localization
Kase H., Negishi R., Arifuku M., Kiyoyanagi N., Kobayashi Y.
Q1 Journal of Applied Physics 2018 цитирований: 6
Reconfigurable Carbon Nanotube Multiplexed Sensing Devices
Xu X., Clément P., Eklöf-Österberg J., Kelley-Loughnane N., Moth-Poulsen K., Chávez J.L., Palma M.
Q1 Nano Letters 2018 цитирований: 31
Site-Specific One-to-One Click Coupling of Single Proteins to Individual Carbon Nanotubes: A Single-Molecule Approach
Freeley M., Worthy H.L., Ahmed R., Bowen B., Watkins D., Macdonald J.E., Zheng M., Jones D.D., Palma M.
Q1 Journal of the American Chemical Society 2017 цитирований: 18
Improvements to the APBS biomolecular solvation software suite
Jurrus E., Engel D., Star K., Monson K., Brandi J., Felberg L.E., Brookes D.H., Wilson L., Chen J., Liles K., Chun M., Li P., Gohara D.W., Dolinsky T., Konecny R., et. al.
Q2 Protein Science 2017 цитирований: 488
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Xu X. и др. Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices // Angewandte Chemie International Edition. 2021. Т. 60. № 37. С. 20184–20189.
RIS |
Цитировать

TY - JOUR

DO - 10.1002/anie.202104044

UR - http://dx.doi.org/10.1002/anie.202104044

TI - Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices

T2 - Angewandte Chemie International Edition

AU - Xu, Xinzhao

AU - Bowen, Benjamin J.

AU - Gwyther, Rebecca E. A.

AU - Freeley, Mark

AU - Grigorenko, Bella

AU - Nemukhin, Alexander V.

AU - Eklöf‐Österberg, Johnas

AU - Moth‐Poulsen, Kasper

AU - Jones, D. Dafydd

AU - Palma, Matteo

PY - 2021

DA - 2021/08/06

PB - Wiley

SP - 20184-20189

IS - 37

VL - 60

SN - 1433-7851

SN - 1521-3773

ER -

BibTex |
Цитировать

@article{2021,

doi = {10.1002/anie.202104044},

url = {https://doi.org/10.1002%2Fanie.202104044},

year = 2021,

month = {aug},

publisher = {Wiley},

volume = {60},

number = {37},

pages = {20184--20189},

author = {Xinzhao Xu and Benjamin J. Bowen and Rebecca E. A. Gwyther and Mark Freeley and Bella Grigorenko and Alexander V. Nemukhin and Johnas Eklöf-Österberg and Kasper Moth-Poulsen and D. Dafydd Jones and Matteo Palma},

title = {Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices}

}

MLA
Цитировать
Xu, Xinzhao et al. “Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices.” Angewandte Chemie International Edition 60.37 (2021): 20184–20189. Crossref. Web.