Open Access
Open access

Nitro-, Cyano-, and Methylfuroxans, and Their Bis-Derivatives: From Green Primary to Melt-Cast Explosives

Larin A.A., Bystrov D.M., Fershtat L.L., Konnov A.A., Makhova N.N., Monogarov K.A., Meerov D.B., Melnikov I.N., Pivkina A.N., Kiselev V.G., Muravyev N.V.
Тип документаJournal Article
Дата публикации2020-12-10
Название журналаMolecules
ИздательMultidisciplinary Digital Publishing Institute (MDPI)
КвартильQ2
ISSN14203049
  • Organic Chemistry
  • Drug Discovery
  • Physical and Theoretical Chemistry
  • Pharmaceutical Science
  • Molecular Medicine
  • Analytical Chemistry
  • Chemistry (miscellaneous)
Краткое описание

In the present work, we studied in detail the thermochemistry, thermal stability, mechanical sensitivity, and detonation performance for 20 nitro-, cyano-, and methyl derivatives of 1,2,5-oxadiazole-2-oxide (furoxan), along with their bis-derivatives. For all species studied, we also determined the reliable values of the gas-phase formation enthalpies using highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach and isodesmic reactions with the domain-based local pair natural orbital (DLPNO) modifications of the coupled-cluster techniques. Apart from this, we proposed reliable benchmark values of the formation enthalpies of furoxan and a number of its (azo)bis-derivatives. Additionally, we reported the previously unknown crystal structure of 3-cyano-4-nitrofuroxan. Among the monocyclic compounds, 3-nitro-4-cyclopropyl and dicyano derivatives of furoxan outperformed trinitrotoluene, a benchmark melt-cast explosive, exhibited decent thermal stability (decomposition temperature >200 °C) and insensitivity to mechanical stimuli while having notable volatility and low melting points. In turn, 4,4′-azobis-dicarbamoyl furoxan is proposed as a substitute of pentaerythritol tetranitrate, a benchmark brisant high explosive. Finally, the application prospects of 3,3′-azobis-dinitro furoxan, one of the most powerful energetic materials synthesized up to date, are limited due to the tremendously high mechanical sensitivity of this compound. Overall, the investigated derivatives of furoxan comprise multipurpose green energetic materials, including primary, secondary, melt-cast, low-sensitive explosives, and an energetic liquid.

Пристатейные ссылки: 84
Цитируется в публикациях: 6
The equilibrium molecular structure of 3-methyl-4-nitro- and 4-methyl-3-nitrofuroxans by gas-phase electron diffraction and coupled cluster calculations
Belyakov A.V., Oskorbin A.A., Losev V.A., Rykov A.N., Shishkov I.F., Fershtat L.L., Larin A.A., Kuznetsov V.V., Makhova N.N.
Q2 Journal of Molecular Structure 2020 цитирований: 2
Prediction of Energetic Material Properties from Electronic Structure Using 3D Convolutional Neural Networks
Casey A.D., Son S.F., Bilionis I., Barnes B.C.
Q1 Journal of Chemical Information and Modeling 2020 цитирований: 4
Challenging the limits of nitrogen and oxygen content of fused rings
Hu L., Gao H., Shreeve J.M.
Q1 Journal of Materials Chemistry A 2020 цитирований: 8
Pushing the Energy-Sensitivity Balance with High-Performance Bifuroxans
Larin A.A., Shaferov A.V., Epishina M.A., Melnikov I.N., Muravyev N.V., Ananyev I.V., Fershtat L.L., Makhova N.N.
Q2 ACS Applied Energy Materials 2020 цитирований: 13
Pressure DSC for energetic materials. Part 2. Switching between evaporation and thermal decomposition of 3,5-dinitropyrazole
Gorn M.V., Monogarov K.A., Dalinger I.L., Melnikov I.N., Kiselev V.G., Muravyev N.V.
Q2 Thermochimica Acta 2020 цитирований: 6
Exploring the highly dense energetic materials via regiochemical modulation: A comparative study of two fluorodinitromethyl-functionalized herringbone trifuroxans
Zhai L., Bi F., Luo Y., Sun L., Huo H., Zhang J., Zhang J., Wang B., Chen S.
Q1 Chemical Engineering Journal 2020 цитирований: 9
Properties and Promise of Catenated Nitrogen Systems As High-Energy-Density Materials
O’Sullivan O.T., Zdilla M.J.
Q1 Chemical Reviews 2020 цитирований: 28
Bis(Nitroxymethylisoxazolyl) Furoxan: A Promising Standalone Melt‐Castable Explosive
Johnson E.C., Sabatini J.J., Chavez D.E., Wells L.A., Banning J.E., Sausa R.C., Byrd E.F., Orlicki J.A.
Q1 ChemPlusChem 2020 цитирований: 11
Open Access
Open access
1,2,5-Oxadiazole-Based High-Energy-Density Materials: Synthesis and Performance
Fershtat L.L., Makhova N.N.
Q1 ChemPlusChem 2020 цитирований: 45
Accurate Thermochemistry of Novel Energetic Fused Tricyclic 1,2,3,4-Tetrazine Nitro Derivatives from Local Coupled Cluster Methods
Kiselev V.G., Goldsmith C.F.
Q2 Journal of Physical Chemistry A 2019 цитирований: 7
Combinations of furoxan and 1,2,4-oxadiazole for the generation of high performance energetic materials
Xiong H., Yang H., Lei C., Yang P., Hu W., Cheng G.
Q1 Dalton Transactions 2019 цитирований: 12
Impact of Stereo- and Regiochemistry on Energetic Materials
Barton L.M., Edwards J.T., Johnson E.C., Bukowski E.J., Sausa R.C., Byrd E.F., Orlicki J.A., Sabatini J.J., Baran P.S.
Q1 Journal of the American Chemical Society 2019 цитирований: 37
Safer and Convenient Synthesis of 3,4-Dicyanofuroxan
Johnson E.C., Bukowski E.J., Sausa R.C., Sabatini J.J.
Q1 Organic Process Research and Development 2019 цитирований: 9
Accurate Prediction of Bond Dissociation Energies and Barrier Heights for High-Energy Caged Nitro and Nitroamino Compounds Using a Coupled Cluster Theory
Kiselev V.G., Goldsmith C.F.
Q2 Journal of Physical Chemistry A 2019 цитирований: 17
New Strategy for Enhancing Energetic Properties by Regulating Trifuroxan Configuration: 3,4-Bis(3-nitrofuroxan-4-yl)furoxan
Zhai L., Bi F., Luo Y., Wang N., Zhang J., Wang B.
Q1 Scientific Reports 2019 цитирований: 21
Open Access
Open access
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Larin A.A. и др. Nitro-, Cyano-, and Methylfuroxans, and Their Bis-Derivatives: From Green Primary to Melt-Cast Explosives // Molecules. 2020. Т. 25. № 24. С. 5836.
RIS |
Цитировать

TY - JOUR

DO - 10.3390/molecules25245836

UR - http://dx.doi.org/10.3390/molecules25245836

TI - Nitro-, Cyano-, and Methylfuroxans, and Their Bis-Derivatives: From Green Primary to Melt-Cast Explosives

T2 - Molecules

AU - Larin, Alexander A.

AU - Bystrov, Dmitry M.

AU - Fershtat, Leonid L.

AU - Konnov, Alexey A.

AU - Makhova, Nina N.

AU - Monogarov, Konstantin A.

AU - Meerov, Dmitry B.

AU - Melnikov, Igor N.

AU - Pivkina, Alla N.

AU - Kiselev, Vitaly G.

AU - Muravyev, Nikita V.

PY - 2020

DA - 2020/12/10

PB - MDPI AG

SP - 5836

IS - 24

VL - 25

SN - 1420-3049

ER -

BibTex |
Цитировать

@article{2020,

doi = {10.3390/molecules25245836},

url = {https://doi.org/10.3390%2Fmolecules25245836},

year = 2020,

month = {dec},

publisher = {{MDPI} {AG}},

volume = {25},

number = {24},

pages = {5836},

author = {Alexander A. Larin and Dmitry M. Bystrov and Leonid L. Fershtat and Alexey A. Konnov and Nina N. Makhova and Konstantin A. Monogarov and Dmitry B. Meerov and Igor N. Melnikov and Alla N. Pivkina and Vitaly G. Kiselev and Nikita V. Muravyev},

title = {Nitro-, Cyano-, and Methylfuroxans, and Their Bis-Derivatives: From Green Primary to Melt-Cast Explosives}

}

MLA
Цитировать
Larin, Alexander A. et al. “Nitro-, Cyano-, and Methylfuroxans, and Their Bis-Derivatives: From Green Primary to Melt-Cast Explosives.” Molecules 25.24 (2020): 5836. Crossref. Web.