Open Access
Boletin Medico del Hospital Infantil de Mexico
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
SCImago
Q3
WOS
Q4
Impact factor
0.6
SJR
0.245
CiteScore
1.6
Categories
Pediatrics, Perinatology and Child Health
Areas
Medicine
Years of issue
1946-1965, 1974-1998, 2012-2024
journal names
Boletin Medico del Hospital Infantil de Mexico
B MED HOSP INFANT M
Top-3 citing journals

Frontiers in Pediatrics
(18 citations)

Children
(11 citations)

Frontiers in Immunology
(9 citations)
Top-3 organizations

National Autonomous University of Mexico
(20 publications)

Tecnológico de Monterrey
(4 publications)

Yale University
(2 publications)
Most cited in 5 years
Found
Publications found: 2192
Preparation of High‐Temperature‐Resistant Polybenzoxazole Paper by a Two‐Step Method
Zhou W., He X., Yang K., Wang H., Chen Y., Wang S., Xue Q.
Polybenzoxazole (PBO) paper, made of PBO chopped fibers and PBO fibrids, is used in many cutting‐edge fields because of its excellent properties. The rigid molecular structure makes PBO only dissolved in strong acids such as fuming sulfuric acid and polyphosphoric acid at a very high temperature. Due to the harsh preparation conditions, it is not easy to industrialize PBO fibrids. Herein, a two‐step method was used to prepare the PBO paper. Firstly, polyhydroxyamide (PHA) was synthesized in an organic solvent and used to prepare fibrids, and the PHA paper was then prepared using PHA fibrids with a traditional wet papermaking process, and the obtained PHA paper was further converted into PBO paper by thermal cyclization. The results show that the PHA fibrids have a high length–diameter ratio, film shape, and abundant hair structure, and the tensile index of the PHA base paper is as high as 123.3 N·m/g. After thermal cyclization, the structure and morphology of the paper have little change, and the mechanical properties of the paper have a certain loss. However, it is still much higher than that of PBO paper prepared directly from PBO fibrids and has excellent thermal stability, so it is suitable for preparing high‐temperature‐resistant paper‐based composites.
Permanent Deformation of Thermoplastic Polyurethane in the Solid‐State Rolling Process
Ahmadi E., Forouzan M.R., Mosaddegh P.
The findings suggest that rolling is a potentially effective technique for commercial applications in industries requiring high‐performance polymer films. The solid‐state rolling process is well‐established for semicrystalline and amorphous polymers, but its application to segmented, two‐phase polymers like thermoplastic polyurethane (TPU) which features physically cross‐linked systems and excellent physical and mechanical properties, remains underexplored. This study aims to investigate the rolling of TPU under various conditions to address viscous relaxation and achieve maximum thickness reduction, producing thin sheets. The rolling characteristics were assessed by measuring the thickness changes of rolled specimens of two TPUs with different hard phase fractions, alongside thermoset polyurethane (PUR) with chemical cross‐linking for comparative analysis. The results showed that the TPUs exhibited little plastic deformation at room temperature. The cold rolling test, conducted at a rolling speed of 0.5 m min−1 with a nominal reduction of 85%, indicated that the permanent reduction ratio was less than 35% for both TPUs. However, when the rolling speed was increased to 3 m min−1, the permanent reduction ratio increased to 67% and 60% for TPU ShA90 and TPU ShA85, respectively. This result indicates that at high rolling speeds, the thermal condition tends to change from isotherm to adiabatic in the rolling test. The maximum reduction ratio of 70% was achieved at a nominal reduction of 85% for TPU ShA90 at higher rolling temperatures and speeds.
Influence of the Recyclate Content on the Process Stability and Part Quality of Injection Moulded Post‐Consumer Polyolefins
Wagner P., Kleinsorge J., Hopmann C.
In recent years, the drive to adopt sustainable practices and develop eco‐friendly processes and products has gained significant momentum in the global polymer industry. A key component of this shift is the increased use of recycled materials, which not only align with environmental goals, but also offer considerable economic advantages. Integrating post‐consumer recyclates (PCRs) into manufacturing processes, particularly in injection moulding, holds great potential for reducing CO2 emissions, decreasing reliance on virgin materials, mitigating waste and promoting a circular economy. Nevertheless, a switch to 100% recyclate has not yet been effective or economical in many areas of application, so mixtures of virgin and recyclate material represent a promising approach and must be analysed further. Therefore, this study examines the impact of different virgin/recyclate‐mixture ratios on both injection moulding process stability and resulting part quality, focusing on high‐density polyethylene (HDPE) and polypropylene (PP) blends. For this purpose, virgin/PCR mixtures are compounded, rheologically analysed using high‐pressure capillary rheometry and processed via injection moulding. The process data are analysed, and the produced parts are mechanically and geometrically evaluated. The findings show that for PP, an increasing recyclate content results in a nearly linear improvement in tensile strength and modulus of elasticity without significantly affecting material viscosity, ensuring stable processing conditions. However, part warpage increases with higher recyclate content. In contrast, for HDPE, a higher recyclate content decreases the mixture viscosity, leading to decreased injection pressure and dosing torque during processing. Despite this, the tensile strength and modulus of elasticity improve, while part warpage decreases for HDPE. For both materials, though tensile strength and elasticity increase, higher recyclate contents negatively affect fracture behaviour, as evidenced by breakage patterns and strain at break. The study also demonstrates that the linear mixing rule can be applied to process parameters and part geometry characteristics for virgin/recyclate mixtures, facilitating the integration of recyclate content into product development.
Bitumen-Biopolymer Materials Modified with Polylactic Acid with Improved Physical and Chemical Properties
Jexembayeva A., Konkanov M., Mamedova L., Aruova L.
With the continuous expansion of the global automobile fleet, there is an escalating demand to enhance and maintain current road infrastructure. Given the information provided, there will be a growing demand for bitumen, a key raw material used in the manufacturing of asphalt. Bitumen may account for up to 60% of the total usage in asphalt production. This study aims to determine the effect of different content of polylactic acid (PLA) on the change in the chemical and physical properties of biopolymer bitumen during its modification. This study was carried out by using a sample of petroleum road bitumen from CASPI BITUM (Kazakhstan) and a sample of PLA from Zhejiang Hisun (China). As a part of the research, the change of quality indicators of biopolymer bitumen when adding 4%–10% of PLA to it has been established. The results showed that the values of the average molecular weight and average molar mass increased with increasing the content of PLA in biopolymer bitumen. In particular, when the PLA content in biopolymer bitumen increased up to 10%, the average molecular weight of the biopolymer bitumen increased from 1,263 to 2,759 Mw and the average molar mass increased from 1,215 to 1,395 Mn. It was shown that increasing the PLA content in biopolymer bitumen from 0% to 10% leads to an increase in the softening temperature from 47 to 70°C or ∼ 49%. It was found that all examined samples of biopolymer bitumen are characterized by increased plasticity at 25°C (>100 cm). It has been established that the addition of 8% PLA to bitumen allows one to obtain a biopolymer bitumen of optimal quality. The results obtained can be used to produce road biopolymer bitumen.
Modified Bitumen Materials from Kazakhstani Oilfield
Sagitova G.F., Ainabekov N.B., Daurenbek N.M., Assylbekova D.D., Sadyrbayeva A.S., Bitemirova A.E., Takibayeva G.A.
The oil bitumen BND 90/130, produced at the “LLP SP Caspi Bitum” with the modifier, which consists of copolymer of ethylene with butyl acrylate and glycidyl methacrylate taken in an amount of 0.5–1.6 wt%, and the tire reclaim (4–20 wt%), which is the destructate of mesh elastomers of different chemical nature, was modified; possibility of using the developed bitumen-elastomer binders in road asphalt concrete was justified. Modification of bitumen with a copolymer of ethylene with butyl acrylate and glycidyl methacrylate leads to an improvement in the properties of road bitumen: the softening point, hardness, deformability at low temperatures, elasticity, and adhesion to metal and mineral filler increase. It was shown that ethylene with butyl acrylate and glycidyl methacrylate chemically interacts with the functional groups of bitumen asphaltenes through the epoxy group of glycidyl methacrylate. Analysis of the spectra and group composition indicates an increased content of high molecular weight asphaltenes in the modified bitumen with a slight increase in structuring resins. It has been established that bitumen modified with rubber crumbs of 0.6–1.0 mm in size has high elasticity. The most effective composition of a bitumen-regenerated composite material based on tire reclaim has been determined. In terms of the totality of physicochemical and operational characteristics and comparative cost, the most acceptable is the bitumen-regenerated composition (with a regenerate content of 20%) and is superior in the complex of properties to bitumen modified with an optimal content of ethylene with butyl acrylate and glycidyl methacrylate (1.6%). The technology for modifying bitumen with tire reclaim is less time-consuming, more economically profitable, and environmentally effective, since it utilizes large-tonnage waste of worn-out tires. The resulting bitumen-polymer compositions have a high positive set of properties: softening point, hardness, elasticity, frost resistance, and low-temperature characteristics.
Design of Highly Porous Materials Based on Chitosan/Pectin Interpolyelectrolyte Complex for Wound Healing Application
Kraskouski A., Mashkin M., Kulikouskaya V., Savich V., Sidarenka A., Pinchuk S., Li R.
Interpolyelectrolyte complexes (IPECs) of polysaccharides are multifunctional polymer materials that improve the mechanical and physicochemical properties of individual polysaccharides. In this study, highly porous (>90%) materials based on IPECs of versatile natural polysaccharides, chitosan (30 and 1,200 kDa) and pectin, are obtained by freeze-drying technique. To enhance the interaction between chitosan and pectin macromolecules, the latter are chemically functionalized with dialdehyde groups. The chitosan-/aldehyde-functionalized pectin (Chit/AF-Pect) polyelectrolyte complex sponges obtained are characterized using SEM, FTIR spectroscopy, and TGA. The swelling capacity study reveals a higher swelling ratio of IPEC sponges with an increase in both the molecular weight and content of chitosan: for Chit30/AF-Pect, the swelling ratio rises from 327% to 480%, while for Chit1200/AF-Pect, from 681% to 1,066%. Additionally, the in vitro degradation test demonstrates higher stability of Chit1200/AF-Pect sponges in comparison with those of Chit30/AF-Pect: after 4 days of incubation, the weight losses are found to be 9%–16% and 18%–41%, respectively. The cytotoxicity study shows that Chit30/AF-Pect sponges are noncytotoxic, with cell viability values >70%. Furthermore, the Chit30/AF-Pect sponges, obtained at chitosan:pectin weight ratio of 5:1, exhibit bactericidal activity against Escherichia coli BIM B-984 G, Pseudomonas aeruginosa BIM B-807 G, Staphylococcus aureus BIM B-1841, and slightly inhibit the growth of Enterococcus faecalis BIM B-1530 G. These findings indicate that the obtained Chit30/AF-Pect sponges can be used to create wound dressings for wound healing applications.
Effects of SiO2 Nanoparticles on Polyvinyl Alcohol/Carboxymethyl Cellulose Polymer Blend Films’ Structural, Wettability, Surface Roughness, and Optical Characteristics
Soliman T.S.
The blend matrix composed of polyvinyl alcohol and carboxymethylcellulose (PVA/CMC) was prepared via the casting method. SiO2 nanoparticles were added as reinforcement in different amounts (SiO2 = 1, 2, 3, and 4 wt.%). The study utilized FTIR to examine the alterations in composition and the interplay between the blend matrix and the inclusion of SiO2. Also, for the first time, the surface roughness and surface wettability of the PVA/CMC blend matrix were investigated with the addition of SiO2 using measurements of contact angle and surface roughness parameters. The surface roughness and wettability of the blend matrix increased as the SiO2 content increased. In addition, the blend matrix optical features were determined by the UV–visible spectrophotometer. Based on the analysis using Tauc’s relation, it was found that the energy bandgap decreases from 5.52 to 5.17 eV (direct transition) and from 4.79 to 4.32 eV (indirect transition) for the PVA/CMC and PVA/CMC/4%SiO2 blend films, respectively. The refractive index increases from 2.009 to about 2.144 for the PVA/CMC and PVA/CMC/4%SiO2 blend films, respectively. Furthermore, optical conductivity and dielectric constants were improved for the PVA/CMC blend film after the addition of SiO2 nanoparticles.
Revolutionizing Sustainable Fashion: Jute–Mycelium Vegan Leather Reinforced with Polyhydroxyalkanoate Biopolymer Crosslinking from Novel Bacteria
Akhter S., Jahan M.S., Rahman M.L., Ruhane T.A., Ahmed M., Khan M.A.
Vegan leather derived from mushroom mycelium is a revolutionary technology that addresses the issues raised by bovine and synthetic leather. Jute–mycelium-based vegan leather was constructed using hessian jute fabric, natural rubber solution, and extracted polyhydroxyalkanoate (PHA) biopolymer from Bacillus subtilis strain FPP-K isolated from fermented herbal black tea liquor waste. The bacterial strain was confirmed using 16S rRNA genomic sequencing. The structural characteristics of sustainable mycelium vegan leather were identified using FTIR, SEM, and TGA methods. To address the functional features of the developed vegan leather, solubility, swelling degree, WVP, WCA, and mechanical strength were also evaluated. Mycelium networking was further validated by micromorphological examination (SEM) of the leather sample’s cross-sectional area. Jute–mycelium leather demonstrated a tensile strength of 8.62 MPa and a % elongation of 8.34, which were significantly greater than the control sample. Vegan leather displayed a strong peak in the O ═ H group of carbohydrates in the examination of chemical bonds. A high-frequency infrared wavelength of 1,462 cm−1 revealed the amide group of protein due to the presence of mycelium, while the absorption peak at 1,703 cm−1 in leather indicated the crosslinking of PHA. Moreover, the TGA study finalized the thermal stability of leather. The enhanced hydrophobicity and reduced swelling degree and solubility also endorsed the water resistance properties of the leather. The results of the investigation substantiated the potential properties of mycelium vegan leather as animal- and environment-free leather.
Effect of Keratin Waste on Poly(ε-Caprolactone) Films: Structural Characterization, Thermal Properties, and Keratinocytes Viability and Proliferation Studies
Rinaldi G., Coccia E., Ferrentino N., Germinario C., Grifa C., Paolucci M., Pappalardo D.
Keratin extracted (KE) from chicken feathers was used for the production of composite films comprising poly(ε-caprolactone) (PCL) and keratin (PCL/KE films). The process involved the extraction of keratin from chicken feathers using a 0.1 M NaOH solution, followed by characterization via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The PCL was synthesized through the ring-opening polymerization (ROP) of ε-caprolactone (ԑ-CL) with Sn(Oct)2 as a catalyst. Films were prepared via solvent casting, including pure PCL films and those enriched with different weight percentages of KE (10%, 15%, 25%, and 30%). The films were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). SEM analysis revealed a more uniform incorporation of KE within the PCL matrix in the case of the 15% keratin-enriched film (PCL/KE15) as compared to other keratin percentages. The thermal analysis showed a positive influence of keratin on the thermal stability of the films. Keratinocytes viability and proliferation tests on the PCL/KE15 film demonstrated compatibility with cells. Collectively, these results hold relevance for potential biomedical applications of PCL/KE films.
Direct Evidence of π–π Interactions in Transparent Organic–Inorganic Polymer Hybrids of Polystyrene and Silica Gel
Iwamura T., Okuzumi S., Adachi K., Takahashi M., Shiotsuki M.
Polystyrene and silica gel polymer hybrids derived from polystyrene and phenyltrimethoxysilane via π–π interactions were synthesized by a slight modification of the previous method. Spectroscopic evidence of the π–π interaction is provided. The obtained polymer hybrids were optically transparent, and no phase separation was observed by scanning electron microscopy measurements. In the FT-IR spectrum of the resulting polymer hybrids, the absorption peaks corresponding to C–H wagging vibration shifted to a lower wavenumber range as the content of silica in the hybrids increased. A UV–vis spectrum of the polystyrene and silica gel polymer hybrids showed a shoulder peak at around 260 nm that shifted toward longer wavenumbers side as the content of silica increased. These results clearly indicate that π–π interactions contribute to the formation of these transparent hybrids.
Structure–Activity Relationship and Stimuli-Responsiveness Behavior of Metallosupramolecular Polymers
Coulibaly S., Tchambaga Etienne C., Koné A., Kouassi A.F., Siomenan C.
The widespread discourse on the circular economy has fueled a growing demand for polymeric materials characterized by mechanical robustness, sustainability, renewability, and the ability to mend defects. Such materials can be crafted using dynamic covalent bonds, albeit rarely or more efficiently through noncovalent interactions. Metal–ligand interactions, commonly employed by living organisms to adapt to environmental changes, play a pivotal role in this endeavor. Metallosupramolecular polymers (MSPs), formed through the incorporation of metal–ligand interactions, present a versatile platform for tailoring physicochemical properties. This review explores recent advancements in MSPs achieved through the assembly of (macro)monomers via reversible metal–ligand interactions. Various strategies and pathways for synthesizing these materials are discussed, along with their resulting properties. The review delves into the stimuli-responsive behavior of coordination metal–ligand polymers, shedding light on the impact of the core employed in MSPs. Additionally, it examines the influence of parameters such as solvent choice and counter-ions on the supramolecular assemblies. The ability of these materials to adapt their properties in response to changing environmental conditions challenges the traditional goal of creating stable materials, marking a paradigm shift in material design.
Comparative Study of Polymer Composites with Cellulose Microfibers from Different Plant Resources
Giri J., Adhikari R., Sapkota J.
Wheat stalk (W), Fosro (F), Nigalo with waxy layer (NW), and Nigalo without waxy layer (NWo) were used to extract microcrystalline cellulose (MCC), the xMCC (where x represents origin such as W, F, NW, and NWo) by thermochemical and mechanical treatments. About 10 wt% of xMCC and commercial MCC (C-MCC) were solution casted with ethylene oxide-epichlorohydrin (EO-EPI) to prepare microcomposites. The xMCC and cryo-fractured composites were observed by scanning electron microscopy, and the mechanical properties of the composites were measured by dynamic mechanical analysis to observe the effect of fillers on viscoelastic properties. The results concluded that the xMCCs are homogeneously dispersed in the EO-EPI polymer matrix, which reinforced the viscoelastic and mechanical properties in EO-EPI composites, and reinforcement is dramatically high with NWoMCC compared to NWMCC, WMCC, FMCC, and C-MCC.
Bio-Based Disposable Containers for Food Services
Barretto R., Qi G., Jones C., Li Y., Sun X.S., Wang D.
Currently, petrochemical plastics dominate the food service industry due to their good mechanical properties and barrier against heat, water vapor, carbon dioxide, and oxygen. This widespread use is not only harmful to humans but also to the ecosystem as synthetic plastics disrupt ecological balance and deplete petroleum-based oil resources. Researchers and manufacturers are continuously addressing this problem by developing bio-based alternatives that provide numerous advantages including structural flexibility, biodegradability, and effective barrier properties. However, the high cost of production and unavailability of equipment for batch processing impede the potential for widespread manufacturing. Natural fibers mixed with bio-based adhesives derived from plants provide one of the biggest potential sources of bio-based materials for the food container industry. Not only does this address the issue of high raw material cost but it also has the potential to become sustainable once processing steps have been optimized. In this review, the current findings of several research related to the production of bio-based disposable food containers, packaging, and composites made from bio-based materials and bio-based adhesives are critically discussed. Several properties and characteristics important to the production of food service containers and primary packaging, as well as the existing challenges and future perspectives, are also highlighted.
Detection of Microdefects in Fabric with Multifarious Patterns and Colors Using Deep Convolutional Neural Network
Xia R., Chen Y., Ji Y.
Automatic detection of fabric defects is important in textile quality control, particularly in detecting fabrics with multifarious patterns and colors. This study proposes a fabric defect detection system for fabrics with complex patterns and colors. The proposed system comprises five convolutional layers designed to extract features from the original images effectively. In addition, three fully connected layers are designed to classify the fabric defects into four categories. Using this system, the detection accuracy is improved, and the depth of the model is shortened simultaneously. Optimal detection rates for testing dirty marks, clip marks, broken yams, and defect-free were 88.01%, 90.15%, 98.01%, and 97.73%, respectively. The experimental results show that the proposed method is effective, feasible, and has significant potential for fabric defect detection.
Mechanical Properties of Sandwiched Construction with Composite and Hybrid Core Structure
Njim E.K., Hasan H.R., Jweeg M.J., Al-Waily M., Hameed A.A., Youssef A.M., Elsayed F.M.
In the field of lighter substitute materials, sandwich plate models of composite and hybrid foam cores are used in this study. Three core structures: composite core structure and then the core is replaced by a structure of a closed and open repeating cellular pattern manufactured with 3D printing technology. It finally integrated both into one hybrid open-cell core filled with foam and employed the same device (WBW-100E) to conduct the three-point bending experiment. The test was conducted based on the international standard (ASTM-C 393-00) to perform the three-point bending investigation on the sandwich structure. Flexural test finding, with the hybrid polyurethane/polytropic acid (PUR/PLA) core, the ultimate bending load is increased by 127.7% compared to the open-cell structure core. In addition, the maximum deflection increased by 163.3%. The simulation results of three-point bending indicate that employing a hybrid combination of PUR-PLA led to an increase of 382.3%, and for PUR–TPU by 111.8%; however, the highest value recorded with PUR/PLA, which has the slightest stress error among the tests. Also, it is reported that when the volume fraction of reinforced aluminum particles is increased, the overall deformation becomes more sufficient, and the test accuracy improves; for example, rising from 0.5% to 3%, the midspan deflection of composite (foam-Al) is increased by 40.34%. There were noticeable improvements in mechanical properties in the 2.5% composite foam-Al.