29 ноября 2021, 17:15

Новые материалы для эффективных термобарьерных покрытий газотурбинных установок

Новые материалы для эффективных термобарьерных покрытий газотурбинных установок
Группа исполнителей проекта РНФ. Слева направо: д.х.н. К.С. Гавричев, И.А. Баженова, А.В. Гуськов, д.х.н. А.В. Хван, к.х.н. П.Г. Гагарин, д.х.н. В.Н. Гуськов

Современные газотурбинные установки являются сложными и дорогостоящими устройствами, поэтому во всем мире идет работа по их совершенствованию, повышению надежности и увеличению ресурса, а также по снижению экологической нагрузки за счет уменьшения расхода топлива на единицу выработанной энергии. Эффективность таких установок зависит от температуры рабочих газов - чем выше температура, тем меньше нужно топлива для создания той же мощности. Немаловажное значение имеет и защита конструкционных элементов от разрушающего воздействия загрязнений, содержащихся в воздухе. В связи с этим возникает потребность в инновационных подходах к совершенствованию и разработке нового поколения химической и температурной защиты деталей, испытывающих максимальную нагрузку, например, турбинных лопаток.

Ученые из ИОНХ РАН, ИХФ РАН, НИТУ МИСИС и Химического факультета МГУ, выполняющие совместные исследования в рамках проекта Российского научного фонда, получили уникальный массив данных по термодинамическим свойствам, термическому расширению, теплопроводности и электрофизическим характеристикам высокотемпературных оксидных материалов на базе танталатов и гафнатов редкоземельных элементов, температуры плавления которых превышают 2000 градусов Цельсия. Изучение взаимодействия синтезированных соединений с оксидами магния, кальция, алюминия, кремния позволило оценить химическую устойчивость покрытий деталей энергоустановок к воздействию взвешенных в воздухе частиц.

Работу прокомментировал руководитель проекта, заведующий лабораторией термического анализа и калориметрии ИОНХ РАН, доктор химических наук Константин Сергеевич Гавричев: «Наш коллектив работает над созданием новых материалов с улучшенными свойствами для современной техники. Одним из направлений работы является определение круга материалов, соответствующих жестким технологическим и эксплуатационным требованиям для авиационной техники и энергетики. Мы работаем с высокотемпературными оксидными материалами, которые способны длительное время работать в окислительной атмосфере при высокой температуре, в которых не происходят превращения, которые могли бы разрушить материал».

В ходе выполнения проекта учеными были исследованы условия получения керамических материалов заданного состава и структуры, определены термические и термодинамические свойства соединений. «Полученные нами результаты необходимы как для модельных расчетов в экстремальных температурных диапазонах, недоступных для экспериментального исследования, так и для определения технологических параметров получения термобарьерных покрытий», – дополнил Константин Сергеевич.

Организации из новости

Читайте также

Предсказаны новые галогениды для солнечной и водородной энергетики
Ученые обнаружили 67 новых соединений галогенов (хлора, брома, фтора и иода), которые потенциально могут существовать в двумерном виде, что открывает широкие перспективы их применения в прикладных задачах, например, при создании приборов для преобразования солнечной энергии. Проанализировав эти вещества, авторы выяснили, что некоторые из них способны извлекать из воды водород под действием солнечного света. Водород — перспективное топливо для «зеленой» энергетики, и обнаруженные соединения позволят удешевить его получение в три раза.
"Зеленая" химия
Материаловедение
Энергетика
18 марта 2024
Тугоплавкие сплавы позволят выдерживать температуры до 1000°С
Ученые доказали, что жаростойкость и прочность тугоплавких сплавов не зависят от количества входящих в их состав компонентов, как считалось ранее. Самую высокую жаростойкость при 1000°С показал сплав из трех металлов, а именно ниобия, титана и хрома, тогда как лучшую прочность продемонстрировал сплав из ниобия и хрома. Это открытие позволит разрабатывать перспективные сплавы для производства двигателей нового поколения, не требующих систем охлаждения.
Высокотемпературные материалы
Материаловедение
Металлы и их сплавы
15 марта 2024
Получен самый пластичный тугоплавкий сплав для космоса и авиации
И все благодаря мелкозернистой структуре — получить ее оказалось относительно просто
Высокотемпературные материалы
Материаловедение
Металлы и их сплавы
13 июня 2023
Машинное обучение помогло подобрать условия синтеза высокоэнтропийного карбида
Синтезировать такие материалы, способные выдерживать сверхвысокие температуры, достаточно сложно: часто получаются многофазные «химеры», которые не обладают необходимыми характеристиками
Высокотемпературные материалы
Математическое моделирование
Материаловедение
23 января 2023
Высокоэнергичные ионы превратили графен в наноалмазы
Ученые получили стабильный материал, состоящий из графена и наноалмазов, облучив многослойный графен быстрыми тяжелыми ионами. Возможность управлять механическими свойствами нового наноструктурированного материала в сочетании с легкостью и гибкостью графена открывает перспективы для его использования в космической авиации, автомобильной промышленности и медицинских устройствах.
Материаловедение
Механика материалов
Механохимия
17 марта 2024
Новый класс материалов ускорит разработку безопасных аккумуляторов
Химики нашли новый класс материалов, который сможет ускорить разработку мультивалентных металл-ионных аккумуляторов. В отличие от литий-ионных аккумуляторов, такие накопители будут безопаснее в эксплуатации и значительно дешевле.
"Зеленая" химия
Материаловедение
Химическая технология
18 февраля 2024