23 January 2023, 13:30 Анна Солдатенко

Машинное обучение помогло подобрать условия синтеза высокоэнтропийного карбида

Машинное обучение помогло подобрать условия синтеза высокоэнтропийного карбида
Распределение атомов элементов в карбиде при 500К и 1200К

Высокоэнтропийные карбиды — уникальные материалы на основе углерода и 4–6 переходных металлов IV и V групп, устойчивые к очень высоким (свыше 2500 градусов) температурам и в целом достаточно стабильные. Атомы сразу нескольких элементов в эквимолярном соотношении составляют кубическую, как у поваренной соли, кристаллическую решетку, и из-за того, что все они «главные», обеспечивают достаточно сильный беспорядок, то есть высокую энтропию. Это означает, что образец в определенном макросостоянии может иметь множество вариантов состояний на уровне атомов, которые внешне никак не повлияют на характеристики материала — именно этим и объясняется его замечательная стабильность. Однако она будет реализована только в случае существования одной фазы (когда элементы «борются» за первенство), что достаточно сложно обеспечить в процессе синтеза: может возникать множество фаз, в которых «победил» какой-то один металл.

Электродуговые плазменные методы позволяют быстро достичь высоких температур, а потому рассматриваются как перспективные подходы к получению высокоэнтропийных карбидов. Чтобы выяснить, при каком именно нагреве получится однофазный материал, сотрудники Томского политехнического университета, Сколковского института науки и технологий и Российского национального исследовательского медицинского университета имени Н.И. Пирогова решили использовать машинное обучение.

Сначала авторы оценили полную энергию решетки из атомов углерода и металлов (в данной работе — титана, циркония, ниобия, гафния и тантала) в разных положениях. Для описания межатомных взаимодействий использовали одну из разновидностей машиннообучаемых потенциалов межатомного взаимодействия (low-rank potentials) на наборе значений энергий различных конфигураций (расположения атомов металла в структуре), полученных методом теории функционала электронной плотности. Далее исследователи рассчитали, структуры с каким распределением металлических атомов в структуре карбида будут энергетически выгодны, а значит, и с большей долей вероятности образуются в диапазоне температур от 227 до 1727°C.

В результате авторы смогли выяснить, какие фазы при каких температурах формируются в системе (Ti, Zr, Nb, Hf, Ta)C. Проведенные эксперименты по синтезу этого карбида методом безвакуумного электродугового плазменного спекания показали, что при минимальной температуре материал распадается на несколько фаз, вероятно, из-за разной скорости диффузии металлов. Затем, по мере увеличения нагрева, все больший вклад вносят энтропийные процессы, свыше 927°C однородность структуры возрастает и при максимальной изученной температуре уже происходит образование однофазного карбида. Авторы подтвердили свои расчеты, изучив рентгенограммы экспериментальных материалов.

«Мы также представили рекомендации по синтезу однофазных высокоэнтропийных карбидов при помощи электродуговых плазменных методов. Надеемся, что наши модели помогут коллегам получать такие важные для науки и промышленности материалы. Они также позволят разработать новые системы на основе нитридов и боридов переходных металлов — популярных компонентов высокотемпературных керамик», — рассказывает Александр Квашнин, доктор физико-математических наук, старший преподаватель Сколтеха.

Работа выполнена при финансировании Российского научного фонда (проект 18-13-00479 — теоретические расчеты, 21-79-10030 — проведение экспериментов в области синтеза ВЭК).

News article labs

News article publications

Read also

Тугоплавкие сплавы позволят выдерживать температуры до 1000°С
Ученые доказали, что жаростойкость и прочность тугоплавких сплавов не зависят от количества входящих в их состав компонентов, как считалось ранее. Самую высокую жаростойкость при 1000°С показал сплав из трех металлов, а именно ниобия, титана и хрома, тогда как лучшую прочность продемонстрировал сплав из ниобия и хрома. Это открытие позволит разрабатывать перспективные сплавы для производства двигателей нового поколения, не требующих систем охлаждения.
High temperature materials
Materials Science
Metals and their alloys
15 March 2024
Получен самый пластичный тугоплавкий сплав для космоса и авиации
И все благодаря мелкозернистой структуре — получить ее оказалось относительно просто
High temperature materials
Materials Science
Metals and their alloys
13 June 2023
Нейросеть помогла рассчитать температуру Аррениуса по двум параметрам материала
Это позволит эффективнее контролировать процесс затвердевания расплавов и применим для различных типов материалов — металлических, силикатных, боратных и органических
Artificial intelligence
Machine learning
Materials Science
Mathematical modeling
20 February 2023
Ученые рассчитали кривые плавления металлов для ядерной энергетики
Гафний и цирконий могут применяться для изготовления конструкционных элементов АЭС, но чтобы это было безопасно, важно понимать, как они будут вести себя при высоких температурах и давлениях. Поскольку классические подходы в их случае работают плохо, авторы предложили альтернативу
Materials Science
Mathematical modeling
Thermophysics
6 February 2023
Новая модель предскажет коррозию реакторов нового поколения
Она описывает, как под действием агрессивного теплоносителя формируется оксидная пленка на стальных частях реакторов на быстрых нейтронах
Materials Science
Mathematical modeling
Nuclear energy
31 January 2023
Тонкий слой кремнезема позволил золотым наночастицам «сиять» ярче
Наночастицы золота, покрытые тонким слоем кремнезема, лучше рассеивают свет, чем те, что имеют плотную «шубу», а значит, их можно использовать как систему адресной доставки лекарств с «маячком» для слежения
Materials Science
Mathematical modeling
Nanomedicine
Nanophotonics
Nanotechnology
Optics
17 January 2023