7 December 2022, 21:00

«Фосфатная метка» оказалась важной для работы белка, связанного с лейкозом

Ученые из ФИЦ Биотехнологии РАН показали, что ядрышковый белок нуклеофозмин (NPM1), нарушения в котором могут вызвать развитие лейкемии и других видов рака, взаимодействует со своим регуляторным белком только при фосфорилировании нуклеофозмина (включении в его состав «фосфатной метки»). Она присоединяется к NPM1 благодаря специальному ферменту и кардинально меняет силу связывания этого белка с его партнером-регулятором. Получение пространственной структуры комплекса 14-3-3 с ключевым фрагментом нуклеофозмина, содержащим «фосфатную метку», открывает возможности для дальнейшей разработки новых препаратов от некоторых видов рака.

«Фосфатная метка» оказалась важной для работы белка, связанного с лейкозом
Трехмерная модель химерных димеров 14-3-3. Красные кружки изображают остатки фосфорилированных Ser48, принадлежащих пептидам NPM1.

Белки — это биологические полимеры, выполняющие разнообразные функции в нашем организме. Например, нуклеофозмин (NPM1) регулирует жизненный цикл клеток, участвует в синтезе других белков, а также влияет на выживание и развитие нейронов человека. При этом мутации нуклеофозмина могут приводить к острым миелоидным лейкемиям (рак крови), и ученые рассматривают его в качестве важного опухолевого маркера и потенциальной мишени для создания лекарственных препаратов.

Работа NPM1, его укладка и расположение в клетке контролируется с помощью различных четко скоординированных механизмов, одним из которых является взаимодействие со специальными регуляторными белками из семейства 14-3-3. Для того, чтобы повлиять на работу NPM1, белки 14-3-3 взаимодействует с ним в области, которая может содержать «фосфатную метку». Более ранние исследования показали, что она необходима для взаимодействия с 14-3-3, однако структура комплекса между двумя этими белками оставалась неизвестной.

Ученые из Федерального исследовательского центра «Фундаментальные основы биотехнологии» РАН (Москва) с коллегами из Университета штата Орегон (США) исследовали молекулярный комплекс, который образуется при взаимодействии NPM1 с белком 14-3-3. Авторы клонировали гены этих двух человеческих белков в клетки кишечной палочки. Бактерии наработали нужные молекулы, и далее авторы выделили интересующие белки и определили структуру их комплекса. Для этого NPM1 был соединен с белком 14-3-3 с помощью искусственной гибкой перемычки, что позволило сблизить те участки белков, которые должны взаимодействовать.

Полученная с помощью кристаллографии структура комплекса белка 14-3-3 с функционально значимым фрагментом нуклеофозмина подтверждает перспективность и универсальность разработанного авторами ранее подхода, основанного на создании гибридных комплексов 14-3-3-партнер, для исследования различных комплексов с участием белков 14-3-3.

Source:  Пресс-служба ФИЦ Биотехнологии РАН

News article profiles

News article publications

Found 
Share

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.

Read also

Присутствие фтора повлияло на противораковую активность аналогов куркумина
Ученые определили пространственную структуру молекул синтетических аналогов куркумина — природного соединения с противоопухолевой активностью. Синтетические аналоги предпочтительнее самого куркумина, поскольку они лучше усваиваются в человеческом организме. Авторы выяснили, что введение атома фтора в исследуемые соединения приводит к изменению их пространственной структуры, что может быть связано с повышенной противораковой активностью. Полученные данные будут полезны при разработке новых лекарственных препаратов для борьбы с онкологическими заболеваниями.
Molecular Biology
Oncology
Structural Biology
5 January 2024
Биологи объяснили «всеядность» уникального каротиноид-связывающего белка
Его секрет оказался в том, что он не «поглощает» лиганд полностью, а лишь его гидрофобный фрагмент. Почему ближайшие родственники белка так не могут — пока не совсем ясно, но уже есть предположения
Molecular Biology
NMR spectroscopy
Structural Biology
4 May 2023
Биофизики раскрыли структуру активного центра тромболитического фермента пиявки
В дальнейшем это поможет сконструировать искусственную биомолекулу, устойчивую к биологическим жидкостям и, возможно, более активную. Она ляжет в основу новых лекарств против тромбозов
Molecular Biology
Structural Biology
27 April 2023
Белок шелкопряда поможет понять, как защитить глаза
Он схож с тем белком, что обеспечивает защиту сетчатки от окислительного стресса и дегенерации. Раскрытие авторами его структуры позволит разработать эффективные лекарства от офтальмологических заболеваний
Biotechnology
Molecular Biology
Structural Biology
10 November 2022
Ученые раскрыли важную роль ДНК-связывающих участков белков во взаимодействии с другими белками
Выяснилось, что «цинковые пальцы» факторов транскрипции, регулирующих активность генов, также обеспечивают их взаимодействие с другими белками
Molecular Biology
NMR spectroscopy
Structural Biology
4 July 2022
Ученые раскрыли принцип работы бактериородопсина на атомном уровне
Оказалось, что этот белок создает своего рода «протонные провода», которые обеспечивают потенциал на мембране и подзарядку клетки
Molecular Biology
Structural Biology
29 April 2022