7 December 2022, 21:00

«Фосфатная метка» оказалась важной для работы белка, связанного с лейкозом

Ученые из ФИЦ Биотехнологии РАН показали, что ядрышковый белок нуклеофозмин (NPM1), нарушения в котором могут вызвать развитие лейкемии и других видов рака, взаимодействует со своим регуляторным белком только при фосфорилировании нуклеофозмина (включении в его состав «фосфатной метки»). Она присоединяется к NPM1 благодаря специальному ферменту и кардинально меняет силу связывания этого белка с его партнером-регулятором. Получение пространственной структуры комплекса 14-3-3 с ключевым фрагментом нуклеофозмина, содержащим «фосфатную метку», открывает возможности для дальнейшей разработки новых препаратов от некоторых видов рака.

«Фосфатная метка» оказалась важной для работы белка, связанного с лейкозом
Трехмерная модель химерных димеров 14-3-3. Красные кружки изображают остатки фосфорилированных Ser48, принадлежащих пептидам NPM1.

Белки — это биологические полимеры, выполняющие разнообразные функции в нашем организме. Например, нуклеофозмин (NPM1) регулирует жизненный цикл клеток, участвует в синтезе других белков, а также влияет на выживание и развитие нейронов человека. При этом мутации нуклеофозмина могут приводить к острым миелоидным лейкемиям (рак крови), и ученые рассматривают его в качестве важного опухолевого маркера и потенциальной мишени для создания лекарственных препаратов.

Работа NPM1, его укладка и расположение в клетке контролируется с помощью различных четко скоординированных механизмов, одним из которых является взаимодействие со специальными регуляторными белками из семейства 14-3-3. Для того, чтобы повлиять на работу NPM1, белки 14-3-3 взаимодействует с ним в области, которая может содержать «фосфатную метку». Более ранние исследования показали, что она необходима для взаимодействия с 14-3-3, однако структура комплекса между двумя этими белками оставалась неизвестной.

Ученые из Федерального исследовательского центра «Фундаментальные основы биотехнологии» РАН (Москва) с коллегами из Университета штата Орегон (США) исследовали молекулярный комплекс, который образуется при взаимодействии NPM1 с белком 14-3-3. Авторы клонировали гены этих двух человеческих белков в клетки кишечной палочки. Бактерии наработали нужные молекулы, и далее авторы выделили интересующие белки и определили структуру их комплекса. Для этого NPM1 был соединен с белком 14-3-3 с помощью искусственной гибкой перемычки, что позволило сблизить те участки белков, которые должны взаимодействовать.

Полученная с помощью кристаллографии структура комплекса белка 14-3-3 с функционально значимым фрагментом нуклеофозмина подтверждает перспективность и универсальность разработанного авторами ранее подхода, основанного на создании гибридных комплексов 14-3-3-партнер, для исследования различных комплексов с участием белков 14-3-3.

Source:  Пресс-служба ФИЦ Биотехнологии РАН

News article profiles

News article publications

Read also

Присутствие фтора повлияло на противораковую активность аналогов куркумина
Ученые определили пространственную структуру молекул синтетических аналогов куркумина — природного соединения с противоопухолевой активностью. Синтетические аналоги предпочтительнее самого куркумина, поскольку они лучше усваиваются в человеческом организме. Авторы выяснили, что введение атома фтора в исследуемые соединения приводит к изменению их пространственной структуры, что может быть связано с повышенной противораковой активностью. Полученные данные будут полезны при разработке новых лекарственных препаратов для борьбы с онкологическими заболеваниями.
Molecular Biology
Oncology
Structural Biology
5 January 2024
Биологи объяснили «всеядность» уникального каротиноид-связывающего белка
Его секрет оказался в том, что он не «поглощает» лиганд полностью, а лишь его гидрофобный фрагмент. Почему ближайшие родственники белка так не могут — пока не совсем ясно, но уже есть предположения
Molecular Biology
NMR spectroscopy
Structural Biology
4 May 2023
Биофизики раскрыли структуру активного центра тромболитического фермента пиявки
В дальнейшем это поможет сконструировать искусственную биомолекулу, устойчивую к биологическим жидкостям и, возможно, более активную. Она ляжет в основу новых лекарств против тромбозов
Molecular Biology
Structural Biology
27 April 2023
Белок шелкопряда поможет понять, как защитить глаза
Он схож с тем белком, что обеспечивает защиту сетчатки от окислительного стресса и дегенерации. Раскрытие авторами его структуры позволит разработать эффективные лекарства от офтальмологических заболеваний
Biotechnology
Molecular Biology
Structural Biology
10 November 2022
Ученые раскрыли важную роль ДНК-связывающих участков белков во взаимодействии с другими белками
Выяснилось, что «цинковые пальцы» факторов транскрипции, регулирующих активность генов, также обеспечивают их взаимодействие с другими белками
Molecular Biology
NMR spectroscopy
Structural Biology
4 July 2022
Ученые раскрыли принцип работы бактериородопсина на атомном уровне
Оказалось, что этот белок создает своего рода «протонные провода», которые обеспечивают потенциал на мембране и подзарядку клетки
Molecular Biology
Structural Biology
29 April 2022