16 December 2021, 23:00

Белок плазмы крови и оксид графена стали основой искусственных наномышц

Российские ученые предложили способ лазерной печати искусственных мышц из гидрогеля на основе белка плазмы крови быков и оксида графена. Данный метод позволит создавать мягкие, растяжимые, но при этом прочные системы, изменяющие свою форму под действием электрического тока. Они могут лечь в основу наноэлектромеханических устройств для самых разных областей: например, протезирования небольших мышц, создания биороботов и имплантируемых систем высвобождения лекарств. Исследование выполнено при поддержке гранта Российского научного фонда (РНФ) и опубликовано в журнале Biomimetics.

Белок плазмы крови и оксид графена стали основой искусственных наномышц

Новейшие технологии стремятся к миниатюризации — так в маленькое устройство можно вместить большое количество компонентов, которые обеспечат его скорость и производительность. В таком ключе чаще говорят об электронике или спинтронике, когда движутся частицы или их магнитные моменты соответственно, но подобная тенденция наблюдается и в механических объектах. Речь идет о так называемых наноэлектромеханических системах, которые являются чем-то вроде крошечного аналога крупных машин или их частей. Подобный подход особенно интересен в биомедицинских приложениях, например, при создании искусственных сердечных клапанов или мышц. Обеспечить свойства, наиболее близкие к природным, могут биологические вещества. Именно для одного из них физики нашли неожиданное применение.

«Бычий сывороточный альбумин получают из плазмы крови быка и обычно используют как "корм" для клеток, мы же сделали его основой для искусственных мышц. Нас вдохновила работа коллег, которые изготовили из полимеризованного белка фигурку микропаучка, начинающего двигаться при изменении химического состава окружающей среды. Мы поняли, что можно улучшить технологию, если добавить проводящие электричество материалы», — говорит аспирант Никита Некрасов, участник проекта.

Ученые из Национального исследовательского университета «МИЭТ» (Зеленоград) предложили способ создания мягких искусственных мышц на основе гидрогеля из альбумина и оксида графена. Их водную смесь с особым веществом, запускающим межмолекулярную сшивку под действием света, облучали фемтосекундным импульсным лазером, и в результате удалось сформировать тонкие нанопроволоки. Такой способ называют лазерной печатью, и потенциально он позволяет изготавливать изделия самой разной формы.

Эти структуры довольно прочны (в полтора раза прочнее полимера из чистого белка) и могут проводить электричество благодаря оксиду графена. Сывороточный альбумин делает их мягкими, гибкими и, как предполагают авторы работы, биосовместимыми, то есть нанопроволоки не будут вредить живым клеткам и тканям. При всем этом некоторые свойства структур, например жесткость или плотность белковой части, можно настраивать, изменяя кислотность или содержание солей в исходном реакционном растворе. Компонентный состав также можно варьировать, таким образом влияя на механические и электрические свойства материала.

«Свойства оксида графена и альбумина дают синергический эффект: прочность и проводимость сочетаются с мягкостью и гибкостью. В дальнейшем мы планируем проверить наши материалы во взаимодействии с клеточными культурами — все же потенциально они должны стать частью биомиметических устройств, например имплантатов для регенерации тончайших микрососудов или нанороботов для доставки лекарств в больной орган», — подводит итог Иван Бобринецкий, доктор технических наук, ведущий научный сотрудник Научно-образовательного центра «Зондовая микроскопия и нанотехнологии».

Source:  Пресс-служба РНФ

News article publications

Found 

Read also

Обнаружены новые особенности спирального антиферромагнетика GdRu2Si2
Международная команда физиков изучила энергетическую структуру спирального антиферромагнетика GdRu2Si2. Были обнаружены новые особенности, что позволит улучшить приборы, использующие магнитную память.
Materials Science
Nanotechnology
Spectroscopy
26 December 2023
Покрытие с наностолбиками защитит силиконовые импланты от бактерий
Ученые из МФТИ, Института биохимии и генетики УФИЦ РАН и Тамбовского государственного технического университета разработали покрытия, которые обезопасят от микробного загрязнения импланты, вживляемые в человеческий организм.
"Smart" materials
Materials Science
Nanotechnology
23 August 2023
«Электронный нос» будет контролировать безопасность пластика вместо людей
Вместе с методами машинного обучения сенсор поможет точнее отслеживать содержание потенциально вредных веществ во вторичном пластике — отличить его от первичного уже удалось с точностью до 98,5%
Machine learning
Materials Science
Nanotechnology
Sensors
18 July 2023
Электродинамическая ловушка помогла охарактеризовать четыре свойства частиц
Новый недорогой подход объединил в себе сразу несколько проверенных методик и показал свою эффективность: погрешность определения массы составила примерно 10%, размера и заряда — 16%, а плотности — 18%
Electrodynamics
Materials Science
Nanotechnology
New techniques
17 July 2023
Новый биоразлагаемый наноматериал оказался способен к самодезинфекции
Он состоит из биоразлагаемых поликапролактоновых волокон с наночастицами серебра. Его можно использовать при изготовлении повязок на раны, в системах очистки воды и фильтрации воздуха
Materials Science
Microbiology
Nanotechnology
27 June 2023
Легирование перовскитов позволило им излучать свет с разными длинами волн
Весь процесс происходил в растворе при комнатной температуре, а для точной настройки длины волны излучаемого света необходимо было лишь менять соотношение добавляемых прекурсоров — источников ионов иттербия и марганца
Materials Science
Nanophotonics
Nanotechnology
7 June 2023