26 декабря 2023, 12:00

Обнаружены новые особенности спирального антиферромагнетика GdRu2Si2

Ежегодно на планете создаются и собираются сотни петабайт данных, которые надо где-то хранить. Используемые сейчас устройства, например типов hdd и ssd, имеют недостатки в виде относительной хрупкости и ограниченности в возможности хранения данных. Одним из следующих этапов развития данной отрасли может служить переход к магнитным накопителям, использующим небольшие «вихри». Эти магнитные вихри, называемые скирмионами, образуются в некоторых веществах и могут иметь размер в миллиардные доли метра. 

Как показывают исследования, скирмионы оказались чрезвычайно устойчивы к внешним воздействиям. Еще одной их важной особенностью является то, что ученые могут контролировать их поведение, изменяя температуру или применяя электрический ток. Однако эта область остается еще довольно слабо изученной, и необходимы исследования, направленные на улучшение понимания свойств и устройства таких веществ.

Сергей Еремеев, ведущий научный сотрудник ИФПМ СО РАН, поясняет: «Центросимметричный антиферромагнетик GdRu2Si2 хорошо известен с начала 1980-х годов. Недавно он вернулся в поле зрения исследовательских проектов с открытием квадратной магнитной решетки скирмиона без геометрически нарушенной симметрии. Эта фаза скирмиона появляется во внешнем магнитном поле 2–2,5 Тл при температуре ниже 20 К. Хотя магнитные свойства материала на протяжении многих лет изучались очень подробно, появление фазы скирмиона возобновило и активизировало дискуссии, особенно касающиеся особенностей появления скирмионов».

Задачей ученых было исследование свойств этого материала и предсказание возможных кандидатов, которые могли бы обнаружить необычные свойства магнитных скирмионов, а также получение подробной информации о поверхностных и объемных электронных структурах и, самое главное, о том, как электронная структура модифицируется при изменении температуры.

Были выращены монокристаллы GdRu2Si2 высокой чистоты и структурного качества. Образцы скалывали в сверхвысоком вакууме и проводили исследование их электронной энергетической структуры при различных температурах с помощью фотоэлектронной спектроскопии. Использование синхротронного излучения позволило получить данные высокого качества. Экспериментальные результаты сопоставлялись с расчетами электронной структуры, выполненными в рамках теории функционала плотности.

Таким образом, авторы исследовали объемную и поверхностную электронную структуру материала GdRu2Si2. Хорошее согласие экспериментальных и теоретических результатов позволило детально охарактеризовать свойства и орбитальный состав поверхности Ферми GdRu2Si2. Удалось выяснить, что лежащая в основе образования решетки скирмионов спиральная магнитная структура материала обусловлена особенной геометрией поверхности Ферми. В частности, главную роль играют участки поверхности Ферми. Именно они отвечают за необычное магнитное взаимодействие, приводящее к образованию магнитных вихрей. Хотя в GdRu2Si2 фаза скирмионов возникает при довольно низкой температуре, глубокое понимание лежащей в основе физики скирмионов в центросимметричных системах может помочь предсказать новые материалы, в которых скирмионы наноразмера могут появиться при существенно более высокой температуре, а возможно, даже при комнатной.

Василий Столяров, директор Центра перспективных методов мезофизики и нанотехнологий МФТИ, добавляет: «Недавно в этом материале была обнаружена квадратная решетка скирмионов. Решетка имеет период 1,9 нм и наименьший размер скирмионов, наблюдаемый на сегодняшний день. Таким образом, материал является привлекательным для разработки устройств магнитной памяти нового поколения с высокой плотностью записи и низким энергопотреблением. В дальнейшем мы планируем применить сканирующую туннельную микроскопию со спиновым разрешением, развитую у нас в Центре, для визуализации магнитной текстуры поверхности в прямом пространстве».

Работу провела международная команда ученых из Института физики прочности и материаловедения СО РАН (Томск), СПбГУ, МФТИ, МИСиС, ВНИИА им. Н. Л. Духова, из Германии: Технического университета Дрездена, Франкфуртского университета им. Гете — и Испании: Университета Страны Басков, Центра физики материалов г. Сан-Себастьян, Международного физического центра Доностии, Фонда Икербаск, а также Университета имени Иоганна Кеплера (Австрия) и Технического университета Чалмерс (Швеция).

Работа опубликована в журнале Nanoscale Advances.

Источник:  Пресс-служба МФТИ

Профили учёных из новости

Лаборатории из новости

Лаборатория сверхпроводящих и квантовых технологий
Всероссийский научно-исследовательский институт автоматики имени Н. Л. Духова
Всероссийский научно-исследовательский институт автоматики имени Н. Л. Духова
Лаборатория направлена на проведение экспериментальных и теоретических исследований в области создания новых сверхпроводящих гибридных систем и применения новейших открытий науки (сверхпроводимость, кубиты, нейроморфные системы).
Нанотехнологии
Физика конденсированного состояния
Физика твердого тела
Лаборатория электронной и спиновой структуры наносистем
Санкт-Петербургский государственный университет
Санкт-Петербургский государственный университет
Экспериментальное и теоретическое исследование особенностей электронной и спиновой структуры систем с Дираковским конусом электронных состояний на основе топологических изоляторов, различного типа и стехиометрии
Материаловедение
Нанотехнологии
Физика конденсированного состояния

Организации из новости

Институт физики прочности и материаловедения СО РАН
ИФПМ СО РАН
 Россия, Томск
2 лаборатории20 профилей
5 473 публикации48 500 цитированийИндекс Хирша: 73
Московский физико-технический институт
МФТИ
 Россия, Долгопрудный
25 лабораторий298 профилей
23 440 публикаций322 142 цитированияИндекс Хирша: 170
Национальный исследовательский технологический университет «МИСиС»
МИСиС
 Россия, Москва
10 лабораторий119 профилей
15 205 публикаций193 117 цитированийИндекс Хирша: 133
Санкт-Петербургский государственный университет
СПбГУ
 Россия, Санкт-Петербург
14 лабораторий173 профиля
64 723 публикации712 777 цитированийИндекс Хирша: 220
Всероссийский научно-исследовательский институт автоматики имени Н. Л. Духова
ВНИИА им. Н. Л. Духова
 Россия, Москва
3 лаборатории36 профилей
1 438 публикаций16 445 цитированийИндекс Хирша: 49

Публикации из новости

Найдено 

Читайте также

Туннельный контакт помог изучить электронную структуру углеродных нанотрубок
Предложенная технология поможет точно определять ширину запрещенной зоны нанотрубок, которая является ключевой характеристикой для разработки любых электронных устройств на их основе.
Материаловедение
Нанотехнологии
Наноэлектроника
Спектроскопия
22 марта 2022
Покрытие с наностолбиками защитит силиконовые импланты от бактерий
Ученые из МФТИ, Института биохимии и генетики УФИЦ РАН и Тамбовского государственного технического университета разработали покрытия, которые обезопасят от микробного загрязнения импланты, вживляемые в человеческий организм.
"Умные" материалы
Материаловедение
Нанотехнологии
23 августа 2023
«Электронный нос» будет контролировать безопасность пластика вместо людей
Вместе с методами машинного обучения сенсор поможет точнее отслеживать содержание потенциально вредных веществ во вторичном пластике — отличить его от первичного уже удалось с точностью до 98,5%
Материаловедение
Машинное обучение
Нанотехнологии
Сенсоры
18 июля 2023
Электродинамическая ловушка помогла охарактеризовать четыре свойства частиц
Новый недорогой подход объединил в себе сразу несколько проверенных методик и показал свою эффективность: погрешность определения массы составила примерно 10%, размера и заряда — 16%, а плотности — 18%
Материаловедение
Нанотехнологии
Новые методики
Электродинамика
17 июля 2023
Новый биоразлагаемый наноматериал оказался способен к самодезинфекции
Он состоит из биоразлагаемых поликапролактоновых волокон с наночастицами серебра. Его можно использовать при изготовлении повязок на раны, в системах очистки воды и фильтрации воздуха
Материаловедение
Микробиология
Нанотехнологии
27 июня 2023
Ученые настроили свечение сине-зеленых металл-органических соединений
Результат позволит разработать новое поколение органических светодиодов белого цвета свечения, имеющих существенно более низкую стоимость, чем известные на данный момент устройства
Материаловедение
Металлоорганическая химия
Спектроскопия
Фотоника
26 июня 2023