2 May 2023, 12:00 Виталина Власова

Белок кальмара стал основой каркаса для выращивания клеток и тканей

Ученые БФУ создали гибкий и прочный каркас для выращивания клеток на основе белка-коллагена, выделенного из кальмара. Предложенный материал по химическому составу близок к белкам млекопитающих и не токсичен, а потому способствует быстрому прикреплению и делению культур стволовых клеток человека. Разработка поможет ускорить выращивание клеточных культур, которые используются в медицине для пересадки на место поврежденных тканей.

Коллаген — основной белок, составляющий межклеточный матрикс, то есть «окружающую среду» для клеток в соединительных тканях нашего организма, таких как сухожилия, кости и хрящи. Он похож на длинные нити, сплетающиеся в трехмерные сети. Те, в свою очередь, создают своего рода каркас ткани. Благодаря тому, что коллагеновые волокна прочные и эластичные, а также служат сигналами, определяющими «судьбу» клеток, в медицине их используют в качестве среды для ускорения роста и дифференциации тканей, например при заживлении ран. Чаще всего такие материалы синтезируют искусственно из растворенного в воде коллагена, однако даже самые современные технологии не позволяют получать коллагеновые «сети», в точности повторяющие структуру естественного клеточного окружения, которое наиболее благоприятно для регенерации, то есть восстановления, ткани.

Ученые из Балтийского федерального университета имени Иммануила Канта (Калининград) с коллегами из Воронежского государственного университета (Воронеж) предложили использовать в качестве каркаса для выращивания клеток не искусственно синтезированный коллаген, а естественный белок, выделенный из кальмара Dosidicus gigas. Это крупное морское животное — наиболее популярный промысловый вид кальмаров, который используется кулинарами для приготовления блюд, а также учеными в исследованиях мозга животных и их поведения. В связи с доступностью и большими объемами вылова Dosidicus gigas — до 700 тысяч тонн в год — этот вид может стать источником коллагена для медицинских целей в промышленных масштабах.

Авторы выделили из кожи кальмара коллаген, после чего белок смешали с глицерином и водой и подсушили в специальной камере, чтобы придать ему форму каркаса. Прочность и эластичность полученного волокнистого материала проверили, растягивая образец. Оказалось, что по механическим свойствам он соответствовал материалам, уже используемым в регенеративной медицине в качестве каркасов для клеток. Анализ последовательности аминокислот, входящих в состав белка, показал, что коллаген Dosidicus gigas близок к коллагену млекопитающих, благодаря чему его можно использовать при работе с человеческими клетками без риска отторжения.

Чтобы экспериментально доказать, что коллагеновый каркас подходит для выращивания человеческих клеток, ученые поместили образцы материала в небольшие пластиковые лунки, заполненные питательной средой, после чего на их поверхность нанесли культуру стволовых клеток человека.

Наблюдение за культурами показало, что спустя четыре дня клетки прочно связались с коллагеновым каркасом, сформировав с ним и друг с другом большое количество контактов. Кроме того, клетки начали активно взаимодействовать с подложкой и преобразовывать ее, выделяя в окружающую среду компоненты внеклеточного матрикса — молекулы, которые играют важную роль при восстановлении ткани. Также авторы пришли к выводу, что коллаген кальмара не токсичен, поскольку средняя выживаемость клеток, выращиваемых на нем, составила 90%.

«Технология создания коллагеновых каркасов из белка кальмара довольно проста, а потому может легко применяться в промышленных масштабах. Эксперименты показали, что предложенный нами материал имеет высокую прочность и эластичность, он биосовместим, нетоксичен, а также способствует росту, делению и миграции эмбриональных клеток человека. Это говорит о том, что его можно считать перспективной заменой синтетическому коллагену, используемому сегодня в регенеративной медицине», — рассказывает Евгений Чупахин, доцент ОНК «Институт медицины и наук о жизни» БФУ имени Иммануила Канта.

Source:  Пресс-служба БФУ

News article publications

Read also

Ученые описали поведение волокна материала для регенеративной медицины
Это позволит создавать конструкции, обеспечивающие оптимальную скорость регенерации тканей
Biomaterials
Biomedicine
Materials Science
Mechanics of materials
13 October 2022
Новый пенистый материал поможет лечить незаживающие раны
Он изготовлен из органических полимеров и наночастиц серебра, что обеспечивает подходящие условия для закрытия незаживающих ран у людей с диабетом и прочими нарушениями обмена веществ.
Biomaterials
Biomedicine
Materials Science
29 March 2022
Созданы новые искусственные аналоги ферментов
Коллектив исследователей из Института общей и неорганической химии им. Н.С. Курнакова РАН, Химического факультета Московского государственного университета им. М.В. Ломоносова, Медико-генетического научного центра и Факультета химии Высшей школы экономики получил новые гибридные органо-неорганические материалы на основе оксида церия, свойства которых имитируют свойства природных ферментов (энзимов).
Biochemistry
Biomaterials
Biomedicine
5 December 2023
Допирование цинком придало костному цементу антибактериальный эффект
Ученые разработали магний-кальций фосфатный костный цемент, допированный цинком, подавляющий рост патогенных бактерий золотистого стафилококка и кишечной палочки, а также выдерживающий нагрузки до 500 килограмм на квадратный сантиметр. Полученный материал может использоваться в реконструктивно-восстановительной хирургии в качестве импортозамещаемых медицинских изделий для восстановления участков разрушенной из-за травм или болезней костной ткани
"Smart" materials
Biomaterials
Materials Science
28 August 2023
Ученые протестировали новый металлотрикотаж в закрытии ран у крыс
Людям такие имплантаты помогут закрывать дефекты при врожденных патологиях и травмах — материал уже совсем скоро опробуют на добровольцах
Biomedicine
Materials Science
Mechanics of materials
23 May 2023
Танталовое покрытие сделало костные имплантаты более износостойкими
Оно состоит из двух слоев — собственно тантала и его оксида, — которые формируют уникальную структуру материала: сверхтвердые включения окружаются пластичной матрицей
Biomedicine
Materials Science
Mechanics of materials
3 March 2023